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| Short Version

» Transition-based dependency parsing has an

exponentially-large search space
« 0(n3) exact solutions exist
- In practice, however, we needed rich features = 0(n®)®
» (This work) with bi-LSTMs, now we can do 0(n3)!

« And we get state-of-the-art results
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| Dependency Parsing
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I Transition-based Dependency Parsing

Goal:
max score( @-@+@-> - +@® )

= max ) score( ®—®)

/,. Terminal
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I Exact Decoding with Dynamic Programming

Goal:

max score( @-0-0-+ - -®
( ) Exponential to polynomial

Terminal

® - ; ® states
Initial state/v O O — O
o o e . =IO
\ e ana

\

= max ) score( ®—®)

(Huang and Sagae, 2010; Kuhimann,
Gomez-Rodriguez and Satta, 2011) 10



Background 0(n?) in theory

Arc-standard

Arc-eager

Arc-hybrid

DP Complexity # Action Types

0(n*) 3
0(n3) 4
0(n3) 3

0(n®) in practice pmy Back to 0(n3)

| Transition Systems

Presentational convenience

Results

In our
paper
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| Arc-hybrid Transition System
‘ State

|~ Is2]sa]so| [Bo[bs] = |
Stack Buffer

‘ Initial State
|:| | ROOT | She | wanted | ... |

‘ Terminal State

(Yamada and Matsumoto, 2003)
‘ ROOT‘ D (Gémez-Rodriguez et al., 2008)
(Kuhlmann et al., 2011)12
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| Arc-hybrid Transition System
‘—b‘ Transitions

1ol ~ |

l shift

[ oo |[ ]

Same as arc-standard
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| Arc-hybrid Transition System
‘—b‘ Transitions

L] leo] -] Lelsidso] [-]

l shift l reduce~
ES DR -]

Same as arc-standard
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| Arc-hybrid Transition System
‘—b‘ Transitions

(el CoE R R

l shift l reduce~ l reduce~

Same as arc-standard
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT | She [ wanted| to | eat| an [apple}
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT | She [ wanted| to | eat| an [apple}
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| Arc-hybrid Transition System

Stack Buffer
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shift
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shift
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT | She [ wanted| to | eat| an [apple}
shift

|[ROOT | | She | wanted| to | eat | an |apple|
shift

| ROOT | She | | wanted | to | eat | an | apple|
reduce~

| ROOT | @nteﬂ to [ eat | an | apple]

She
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT | She [ wanted| to | eat| an [apple}
shift

|[ROOT | | She | wanted| to | eat | an |apple|
shift

| ROOT | She | | wanted | to | eat | an | apple|
reduce~

| ROOT | %nteﬂ to [ eat | an | apple]
shift She

|ROOT | wanted | | to | eat | an |apple]
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT | She [ wanted| to | eat| an [apple}
shift

|[ROOT | | She | wanted| to | eat | an |apple|
shift

| ROOT | She | | wanted | to | eat | an | apple|
reduce~

| ROOT | %nted| to [ eat | an | apple]
shift She

|ROOT | wanted | | to | eat | an |apple]
shift

|ROOT | wanted | to | | eat | an | apple|
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| Arc-hybrid Transition System

Stack Buffer
| ROOT | wanted | to | | eat | an [apple]
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| Arc-hybrid Transition System

Stack Buffer
| ROOT | wanted | to | | eat | an [apple]
reduce~
| ROOT | wanted | ;at | an | apple]
to
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| Arc-hybrid Transition System

Stack Bufrer
| ROOT | wanted | to | | eat | an [apple]
reduce~
| ROOT | wanted | ?at | an | apple]
shift 0
| ROOT | wanted | eat| | an | apple|
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| Arc-hybrid Transition System

Stack Buffer

| ROOT | wanted | to | | eat | an [apple]
reduce~

|ROOT | wanted | ;at | an | apple]
shift 0

| ROOT | wanted | eat| | an | apple|
shift

| ROOT | wanted | eat| an]| | apple|
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| Arc-hybrid Transition System

Stack Buffer

| ROOT | wanted | to | | eat | an [apple]
reduce”

|ROOT | wanted | ?at | an | apple]
shift 0

| ROOT | wanted | eat| | an | apple|
shift

| ROOT | wanted | eat| an]| | apple|
reduce”

| ROOT | wanted | eat| “apple\
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| Arc-hybrid Transition System

Stack Buffer

| ROOT | wanted | to | | eat | an [apple]
reduce~

|ROOT | wanted | ?at | an | apple]
shift 0

| ROOT | wanted | eat| | an | apple|
shift

| ROOT | wanted | eat| an]| | apple|
reduce~

| ROOT | wanted | eat| “apple\
shift

dahn

| ROOT | wanted | eat| apple | []
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| Arc-hybrid Transition System

Stack Buffer
| ROOT | wanted | eat| apple | []
reduce~
| ROOT | wanted | eat []
apple
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| Arc-hybrid Transition System

Stack Buffer
| ROOT | wanted | eat| apple | []
reduce~
| ROOT | wanted | eat []
reduce~ apple
| ROOT | wanted | []
eat
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| Arc-hybrid Transition System

Stack Buffer
| ROOT | wanted | eat| apple | []
reduce~
| ROOT | wanted | eat []
reduce~ apple
| ROOT | wanted | []
reduce~ eat

terminal ‘ ROOT \ [I

wanted
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I Dynamic Programming for Arc-hybrid

0 1 2 3 4 5 6 (n)
|:| |IROOT | She [ wanted | to | eat | an | apple|

Stack Buffer
* Deduction Item « Goal
ERAEs o] [n+1 ]
|1, /] |0,n + 1]
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I Dynamic Programming for Arc-hybrid

IR
i, )]

shift 77+ 1] l shift
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I Dynamic Programming for Arc-hybrid

[k, j]
[?7,J]

reduce-

[ O]

l reduce~

7] \7,-‘ ]
k
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I Dynamic Programming for Arc-hybrid

[k, j]
[4, )]

reduce-

] e

l reduce~

N \7]-‘...‘
k
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I Dynamic Programming for Arc-hybrid

X

}

l reduce~

N \7]-‘...‘
k

reduce-

(i, k] [k, ]]
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I Dynamic Programming for Arc-hybrid
][] |

In Kuhlmann, Gomez-Rodriguez «| i, k]
and Satta (2011)’s notation ’

| e ] « |[2.J]

l reduce~

N \7]-‘...‘
k

(i, k] [k, ]]

reduce-

)
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I Dynamic Programming for Arc-hybrid
][] |
*) [0 K]
T[] - |

) [k ] |[i.J]
T (%[5~ |

l reduce~

| m‘ii VN

k 38
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I Dynamic Programming for Arc-hybrid

[i, /]

shiftk —— Goal: [0,n+1
THEEY [ ]
reduce~ l’]E_ [_I]{']] ko j
n>)
reduce~ l'k_ [,k']] i~k
,J]
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I Time Complexity in Practice

« Complexity depends on feature representation!

« Typical feature representation:

 Feature templates look at specific positions in the
stack and in the buffer
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I Time Complexity in Practice

» Compare the following features
| Isolfbo] | [ Isilsof|be] - |

« Time complexities are different!!!
EEAEE R GainEE
Sen(i,7) l shift sen (k, i, j)l shift

L - il [ Jelifpst]-]
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I Time Complexity in Practice

« Complexity depends on feature representation!

« Typical feature representation:

 Feature templates look at specific positions in the
stack and in the buffer

« Best-known complexity in practice: 0(n®)
(Huang and Sagae, 2010)

Stack Buffer
[ fs2] s | H‘bo‘bl‘ -
O\
Si.lc o sq.rc sy.lc ... sp.rC
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I Best-known Time Complexities (recap)

0(n>) 3P 0 (n®)

Feature

representation

Theoretical Practical
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I In Practice, Instead of Exact Decoding ...

» Greedy search (Nivre, 2003, 2004, 2008; Chen and Manning, 2014)
« Beam search (Zhang and Clark, 2011; Weiss et al.,2015)

« Best-first search (Sagae and Lavie, 2006; Sagae and Tsujii, 2007;
Zhao et al., 2013)

« Dynamic oracles (Goldberg and Nivre, 2012, 2013)

« “"Global” normalization on the beam (zhou et al., 2015; Andor
et al,, 2016)

« Reinforcement learning (Lé and Fokkens, 2017)

 Learning to search (Daumé III and Marcu, 2005; Chang et al.,
2016; Wiseman and Rush, 2016)
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I How Many Positional Features Do We Need?

Non-neural (manual engineering)

\

w= Chen and Manning (2014)

Stack Buffer
[ ls2] s | H\bo\bdbz\ - |
N
si.le; - s1.7Ci sy lc; o Sg.TC

[V

si.lcg. lcyg  s1.1Co.TCy Sg.lcg.lcg  Sg-TCo.TCy
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I How Many Positional Features Do We Need?

Non-neural (manual engineering)

\

w= Chen and Manning (2014)

~—

Stack LSTM Bi-LSTM
w Dyer et al. (2015) = Kiperwasser and
Goldberg (2016)
Stack v Cross and

[Sora] ~ |52 51| 5] Huang (2016)

JANEESVAVAVA

Results
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I How Many Positional Features Do We Need?

* Bi-LSTMs give compact feature representations
(Kiperwasser and Goldberg, 2016; Cross and Huang, 2016)

 Features used in Kiperwasser and Goldberg (2016)
Stack Buffer

[s2sa]sof[bo] = |

 Features used in Cross and Huang (2016)
Stack Bufrer

[silsof[bo] = |
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I How Many Positional Features Do We Need?

Non-neural (manual engineering)

\

w= Chen and Manning (2014)

/

Stack LSTM Bi-LSTM
w Dyer et al. (2015) = Kiperwasser and
Goldberg (2016)
- Cross and

Huang (2016)

Summarizing trees on stack Summarizing input

Enables Enables

Exponential DP Slow DP Fast DP 48



Background 0(n3) intheory = 0(n®) in practice gy Back to 0(n3®)  Results

| Model Architecture

Sshr»Sreer Sren

Multi-layer perceptron

Loe [ [0 J b0 ]

—

Bi-directional LSTM
e ——————————————

[ Word embeddings + POS embeddings ]
She wanted to eat an apple..
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| Model Architecture

Sshr»Sreer Sren

Multi-layer perceptron

Lo
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Bi-directional LSTM
e ——————————————

[ Word embeddings + POS embeddings ]
She wanted to eat an apple.,
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I How Many Positional Features Do We Need?

« We answer the question empirically
.. experimented with greedy decoding

 Two positional feature vectors are enough!
94.08 94.08  94.03 : 52.39

+ —- + 4
100 0.13 0.05 0.12 : 0.23
UAS g0
on
PTB 60
de
dev) _-
{52»51»50»190} {51:50»190} {So,bo} = {bo}
——

Considered in prior work 53
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I How Many Positional Features Do We Need?

e Our minimal feature set
Stack Buffer

‘ ‘ So‘ ‘ bo‘ ‘

 Counter-intuitive, but works for greedy decoding
L s dsol[be] =~ ]
1 reduce~

1] ]

SO 54
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I How Many Positional Features Do We Need?

e Our minimal feature set
Stack Buffer

L~ Isof[bo]

 Counter-intuitive, but works for greedy decoding

* The bare deduction items already contain enough
information to extract features for DP

» Leads to the first 0(n3®) implementation of global
decoders!
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I How Many Positional Features Do We Need?

Non-neural (manual engineering)

\

w= Chen and Manning (2014)

/

Stack LSTM Bi-LSTM
w Dyer et al. (2015) = Kiperwasser and
Goldberg (2016)
- Cross and

Huang (2016)

v Our work
Summarizing trees on stack Summarizing input

Enables Enables

SowDP  FastDp /@st(er) DP s

Exponential DP
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I Best-known Time Complexities (recap)

0(n>) 3P 0 (n®)

Feature

representation

Theoretical Practical
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I
Minimal 0 (7’13)

Feature Set
0(n>) m TR
Theoretical Practical
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| Decoding
Enine |

Score of the sub-sequence

‘...
.
n a
= L]
[ g 04
’.l“
L4 ']
(] l ] (]

. O

[ ]

I AIESE
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JDecoding
T - |
*) [0 K]

[i, k]:vl [k,j]:vz . . .
d “a * k) * )
reduce v vl 12 l[ J] [, /]

A= 5un (0,10 + syenlle ) Lol LR LT[+
l reduce~

10 O

k 60
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| Taining

...........................
...............

-----
---------------

s | g

max score(@+@> - +@) - score(@-@> - +O) + cost(:::: :;

» Cost-augmented decoding (Taskar et al., 2005)

)

[i, k]:v1 [k,j]:vz
[l,]] %] + (%) + Ssh(i, k) + Sre\n(k,j) + 1(headﬁ(k) =+ ])

- ‘i‘y‘ N
k

reduce-
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Background 0(n3) intheory -~ 0(n®) in practice gy Back to 0(n3)

| Comparing with State-of-the-art

90.5
90.0 ~
89.5 -
89.0 -

_ 88.5
Chinese

@DM17

|
@ KBKDS16

CTB 88.0 -

UAS 87.5
87.0

86.5
86.0

¥ BGDS16 ¢ KG16a
" % § DBLMS15

]
@ CFHGD16

X
X  m@WwCle

94.0 95.0

English PTB UAS
x { Local D Global

96.0
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| Comparing with State-of-the-art

90.5
90.0 ~
89.5 -
89.0 -

_ 88.5
Chinese

|
@DM17

Grexosie " Our arc-eager DP
. Our arc-hybrid DP

]
@ CFHGD16

X X

CTB 88.0 -
UAS 87.5 - ¢ BGDS16 ¢ KG16a
- @ DBLMS15

87.0 X Kai6b
86.5 L " @G

m@WC16

86.0 ' | ' | ' |
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| Comparing with State-of-the-art

90.5

90.0 £

89.5 £ .

89.0 - . @DM17
80w argae e
CTB 88.0 £ Our best local S
UAS 875 %X?DBLM?S?ESS(SM ?I:(G16.‘WC16

87.0 ¥y Kaieb

| 93.0 94I 0 95.0 96.0
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| Comparing with State-of-the-art

90.5 —
90.0 t ®315 Our all global
o o B35 Our arc-eager DP
89.5 ¢ D20 K016 @ty 5 Our arc-hybrid DP
89.0 + @DM17
- KBK.D516
Chinese 885 % jﬁ/ .% &) Our a/;c; "Za%‘?[r)gp
/ - ur arc-hybri
CTB 88.0 : Our best local S
- X
UAS 875 % ¥ DBLN?S?S BSie g I:(G16 " @wcis
87.0 _"Eﬁ?ch-;mb
- B @KG16a
86.5 f X 0 CH16
86.0 + ' | . | | I
93.0 94.0 95.0 96.0

English PTB UAS
x { Local = @) Global + § Ourlocal & & Our Global ® =3 Ensemble 65
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| Results — CoNLL'17 Shared Task

« Macro-average of 81 treebanks in 49 languages
« 2"d—hjghest overall performance

75.00

75 |

74.32
74. 00

LAS 74 |

73 75

/3
Exact Exact Gra ph-

Ensemble
Arc-eager Arc-hybrid based

(Shi, Wu, Chen and Cheng, 2017; Zeman et al., 2017) 66



| Conclusion

* Bi-LSTM feature set is minimal yet highly effective
* First 0(n3) implementation of exact decoders

* Global training and decoding gave high performance
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| More in Our Paper

 Description and analysis of three transition systems
(arc-standard, arc-hybrid, arc-eager)

. CKY-ster representatlons of the deduction systems

NN NEeESd ﬁ‘ﬁw

ki (i

k q 1 . I

 Theoretical analysis of the global methods

« Arc-eager models can “simulate” arc-hybrid models

« Arc-eager models can "simulate” edge-factored models

68
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Transition-Based Dependency Parsing
via @ Minimal Feature Set

O https://github.com/tzshi/dp-parser-emnlpl?7
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| CKY-style Visualization

0% 1
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(b) Arc-hybrid

| CKY-style Visualization

i o J
Axioms I}.?""l 7 A 0<i,j<n

Inference Rules

o
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right-reduce Il A i
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(d) Edge-factored graph-based parsing.
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I Results with Arc-eager and Arc-standard

Features Arc-standard Arc-hybrid Arc-eager

—¢ ——

{ S2, S1, 80, b 0} 93.95+0.12 94.08+0.13 93.9240.04
{ s 1, s 50, 0} 94.13+0.06 94.08+0.05 93.91+0.07

{ s 0, 0} 54.47+0.36 | 94.03+0.12 93.9240.07

{_}6_0} 47.11i0.44 52-39i0-23 79-15i0.06

Min positions Arc-standard Arc-hybrid Arc-eager

K&G 2016a - 4 .
C&H 2016a 3 - -
our work 3 2 2
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I Results with Arc-eager and Arc-

standard

Model Trainin Features PTB C1B
& UAS (%) UEM (%) | UAS (%) UEM (%)
Arc-standard Local {52, 81, So, bo} 93.9510.12 92.294¢.66 88.011026 36.871053
Local {?2?;1,?0?3”} 93.894_r0_10 50.82ig_75 87.87J_r0_17 35-4710.48
Arc—hybrid Local {_1:3._[}, ﬁbko} 93.804_&]‘12 49.66i0.43 87.78 +0.09 35.09 +0.40
Global {50, bo} 94.431008 53.034071 | 88.384011 36.5940.27
Local {ﬂ.'skz,ﬂ.skl,%sko,ﬂg[]} 93.804_r0_12 49.66i0.43 87.49J_r0_2[} 33.151&172
Arc-eager Local {50, bo} 93.77+0.08 49.71410.04 87.33+0.11 341741041
Global {50, bo} 94.531005 53.77+046 | 88.621009 37.7510.57
Edge-factored  Global {h,m} 94.5040.13 53.864+0.78 | 88.2540.12 36.4240.592
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