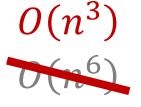
Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set

<u>Tianze Shi</u>* Liang Huang⁺ Lillian Lee^{*}

* Cornell University

+ Oregon State University

 $O(n^3)$ Theoretical Minimal Feature Set



Practical

- Transition-based dependency parsing has an exponentially-large search space
- $O(n^3)$ exact solutions exist \bigcirc
- In practice, however, we needed rich features $\Rightarrow O(n^6)$
- (This work) with bi-LSTMs, now we can do $O(n^3)$!
- And we get state-of-the-art results

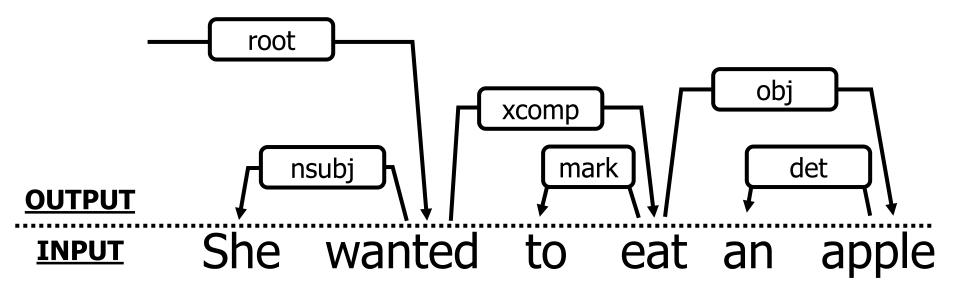
- Transition-based dependency parsing has an exponentially-large search space
- $O(n^3)$ exact solutions exist 🕒
- In practice, however, we needed rich features $\Rightarrow O(n^6)$
- (This work) with bi-LSTMs, now we can do $O(n^3)$!
- And we get state-of-the-art results

- Transition-based dependency parsing has an exponentially-large search space
- $O(n^3)$ exact solutions exist \bigcirc
- In practice, however, we needed rich features $\Rightarrow O(n^6)$
- (This work) with bi-LSTMs, now we can do $O(n^3)$!
- And we get state-of-the-art results

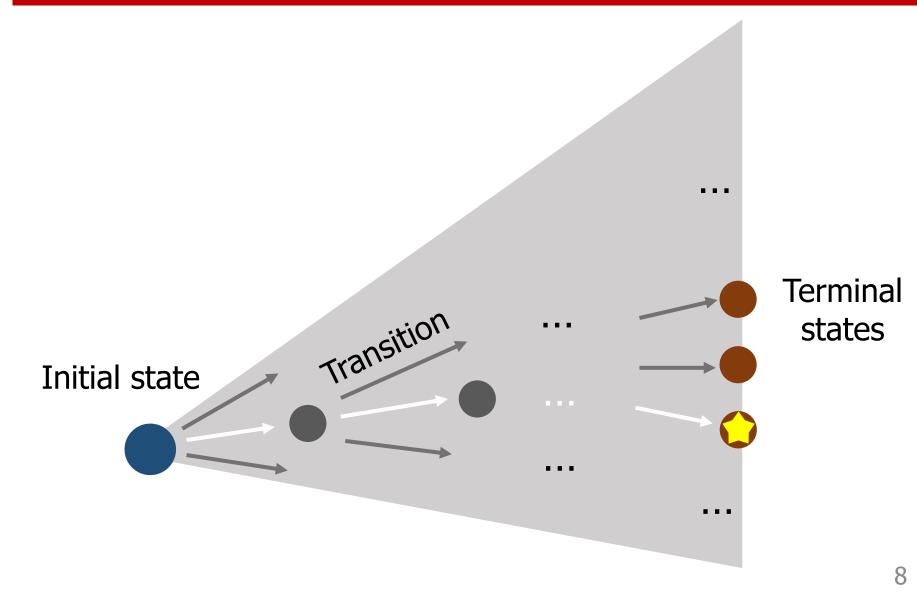
- Transition-based dependency parsing has an exponentially-large search space
- $O(n^3)$ exact solutions exist \bigcirc
- In practice, however, we needed rich features $\Rightarrow O(n^6)$
- (This work) with bi-LSTMs, now we can do $O(n^3)!$
- And we get state-of-the-art results

- Transition-based dependency parsing has an exponentially-large search space
- $O(n^3)$ exact solutions exist \bigcirc
- In practice, however, we needed rich features $\Rightarrow O(n^6)$
- (This work) with bi-LSTMs, now we can do $O(n^3)!$
- And we get state-of-the-art results

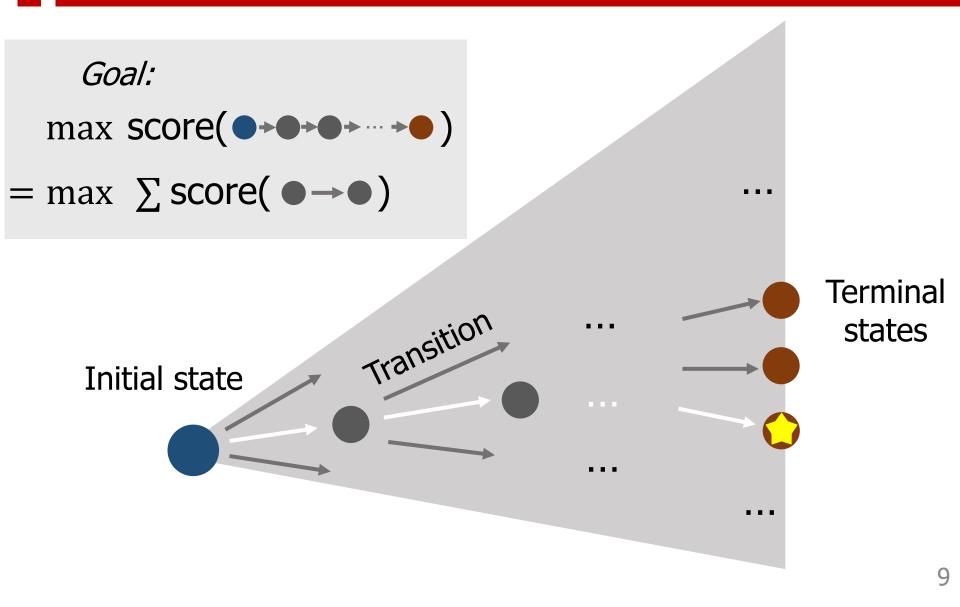
Dependency Parsing



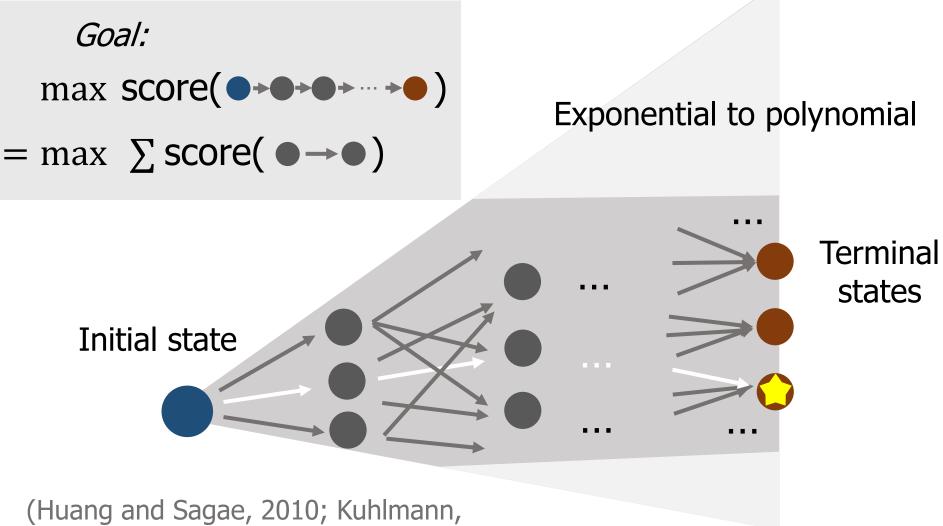
Transition-based Dependency Parsing



Transition-based Dependency Parsing

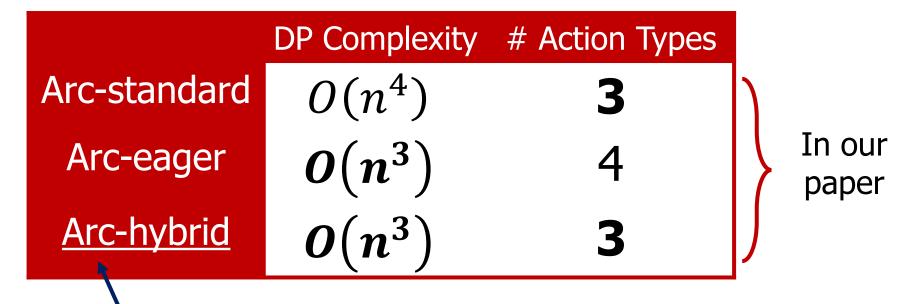


Exact Decoding with Dynamic Programming



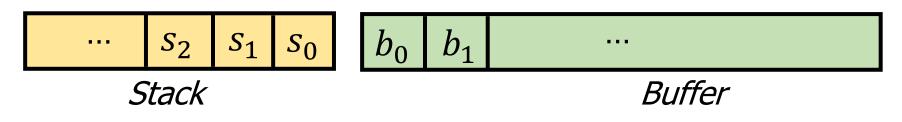
Gómez-Rodríguez and Satta, 2011)

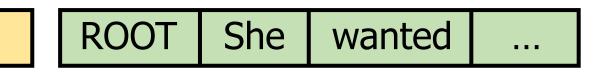
Transition Systems



Presentational convenience

Arc-hybrid Transition System





(Yamada and Matsumoto, 2003) (Gómez-Rodríguez et al., 2008) (Kuhlmann et al., 2011) 12

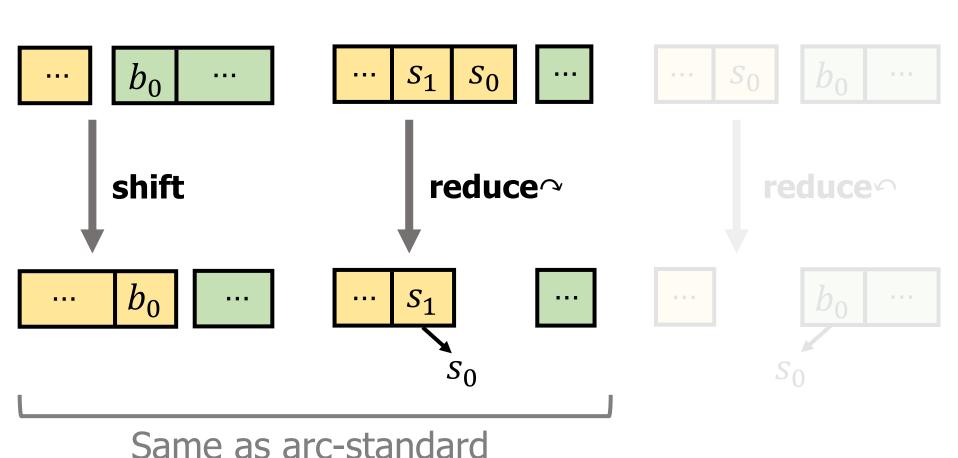
Arc-hybrid Transition System

Transitions

Same as arc-standard

Arc-hybrid Transition System

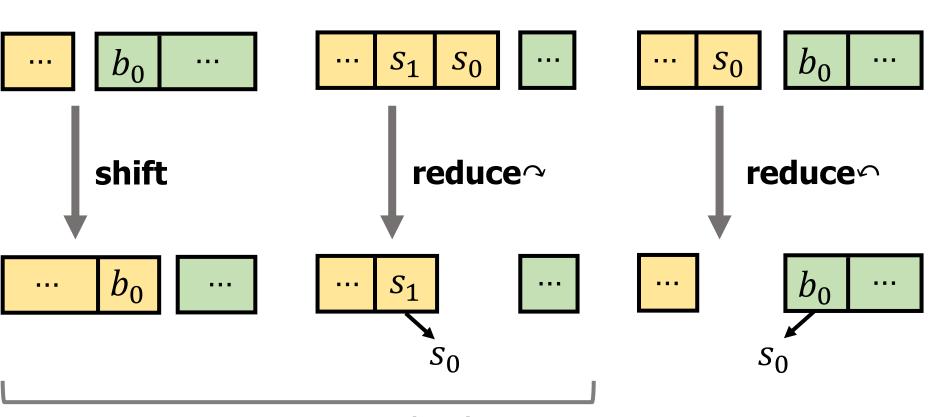
Transitions



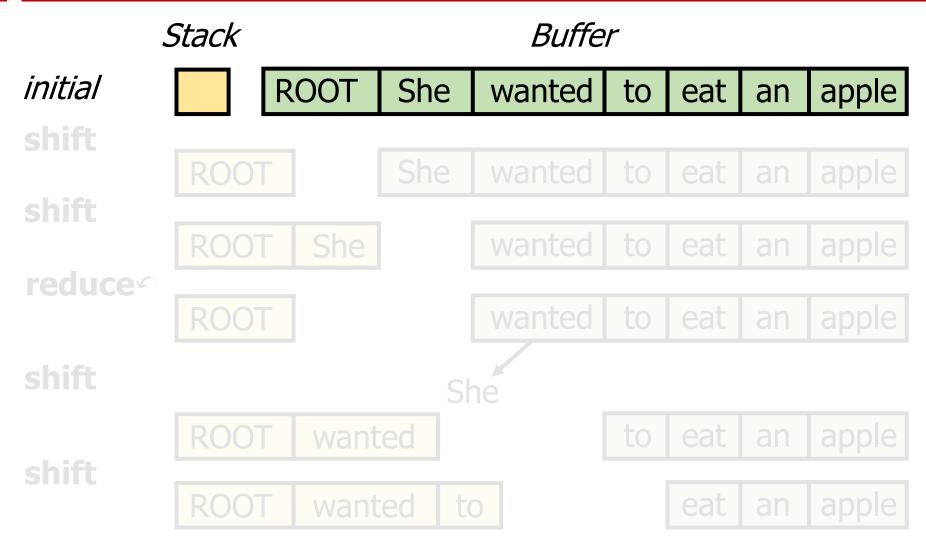
14

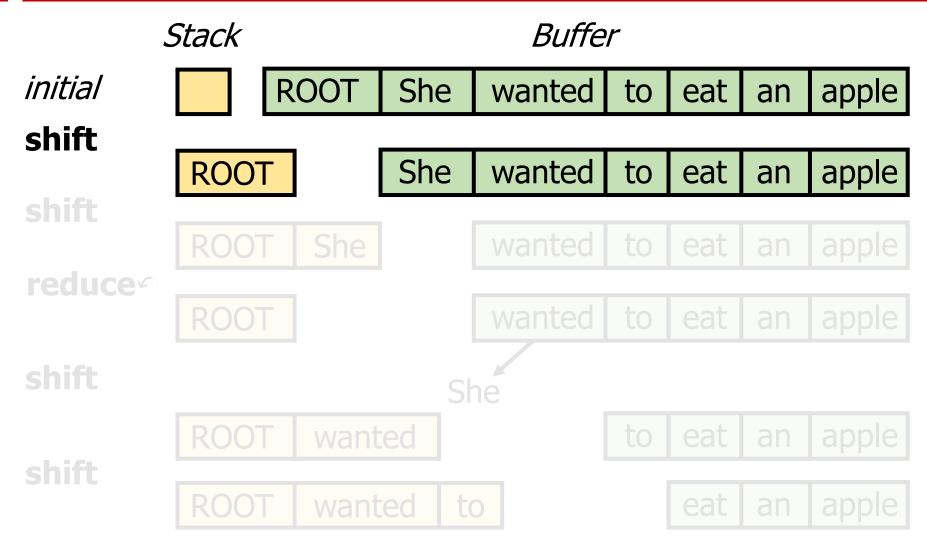
Arc-hybrid Transition System

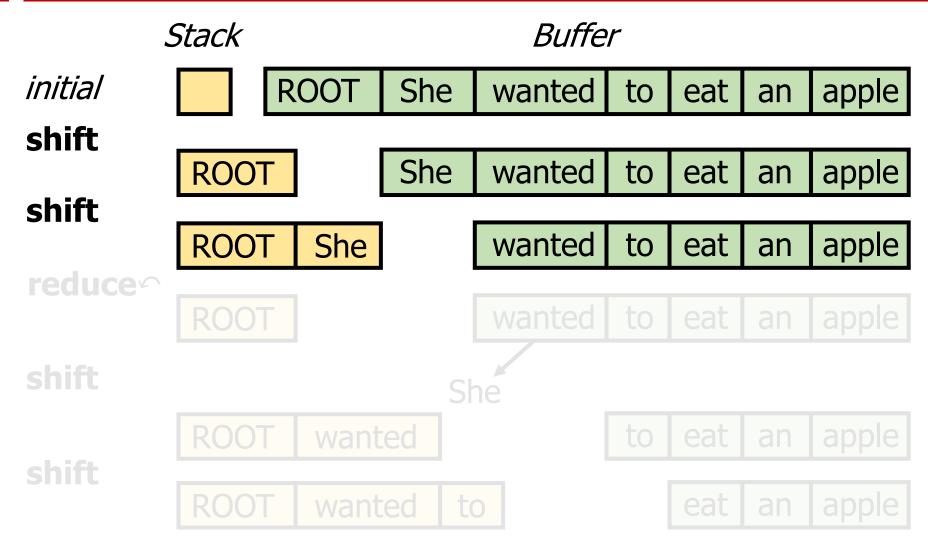
Transitions

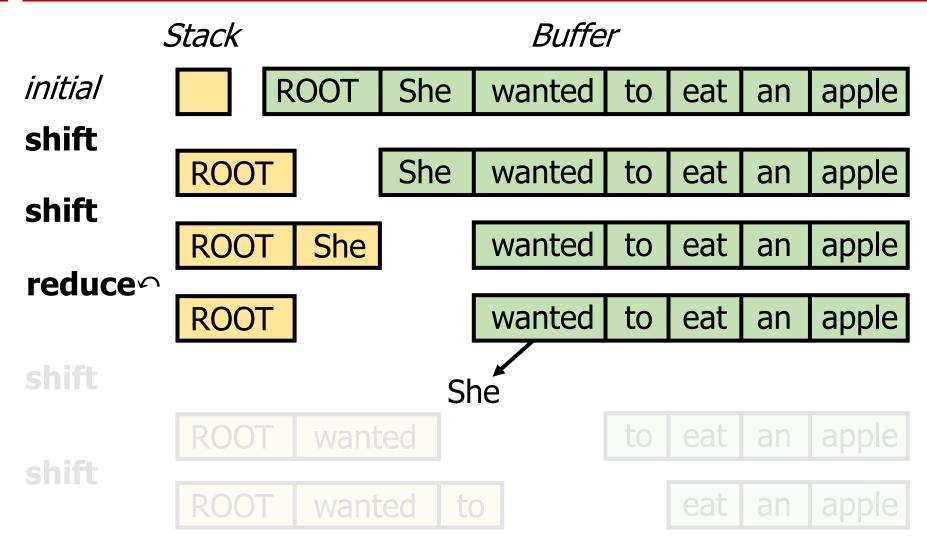


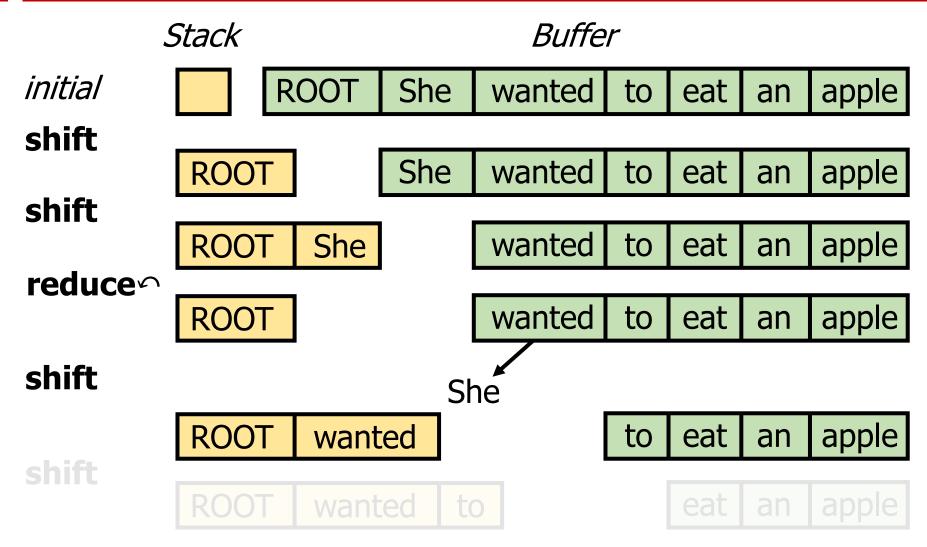
Same as arc-standard

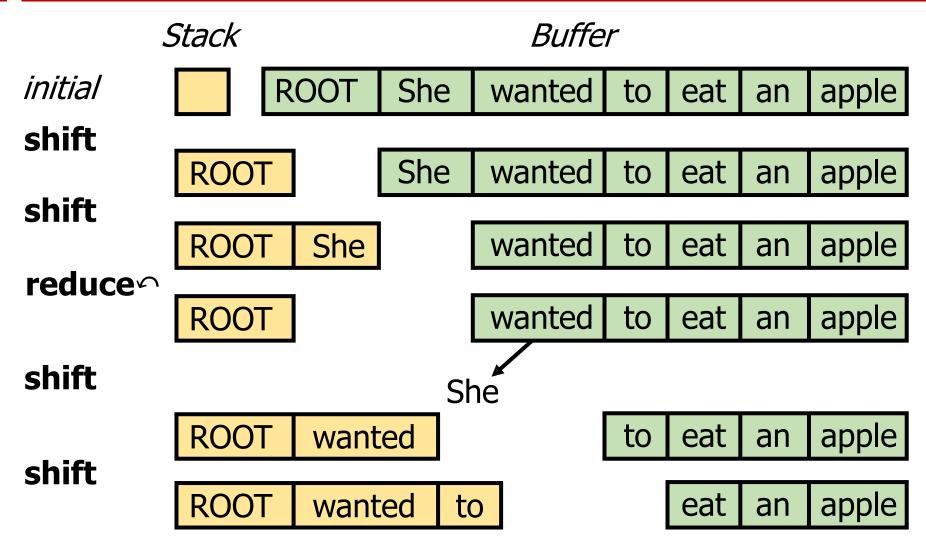


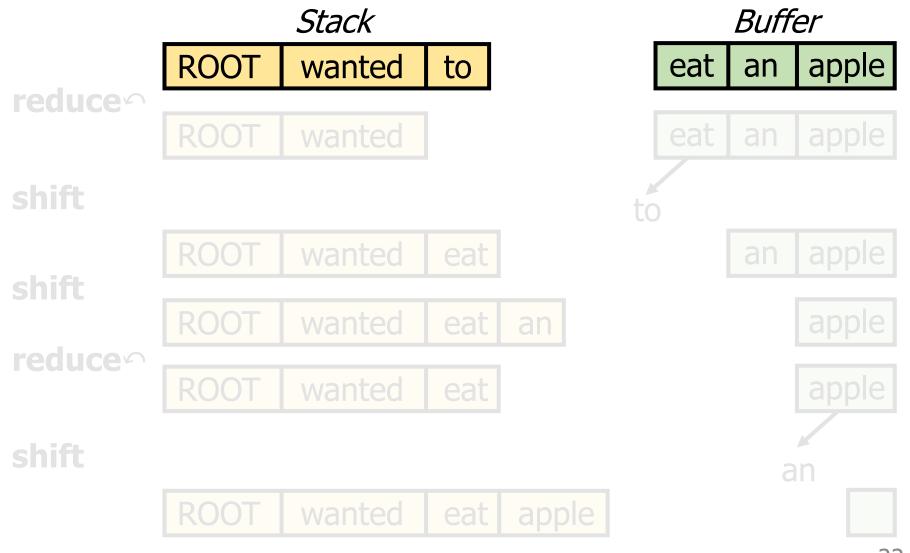


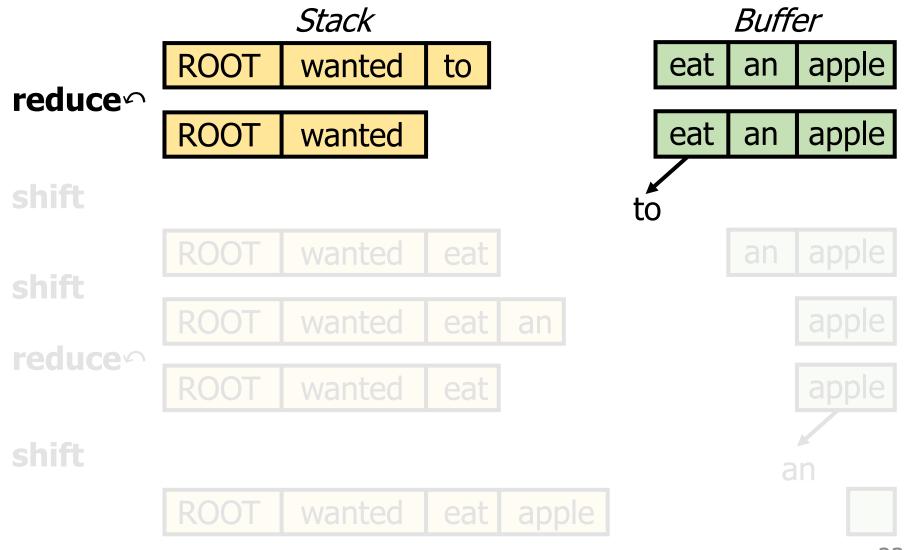


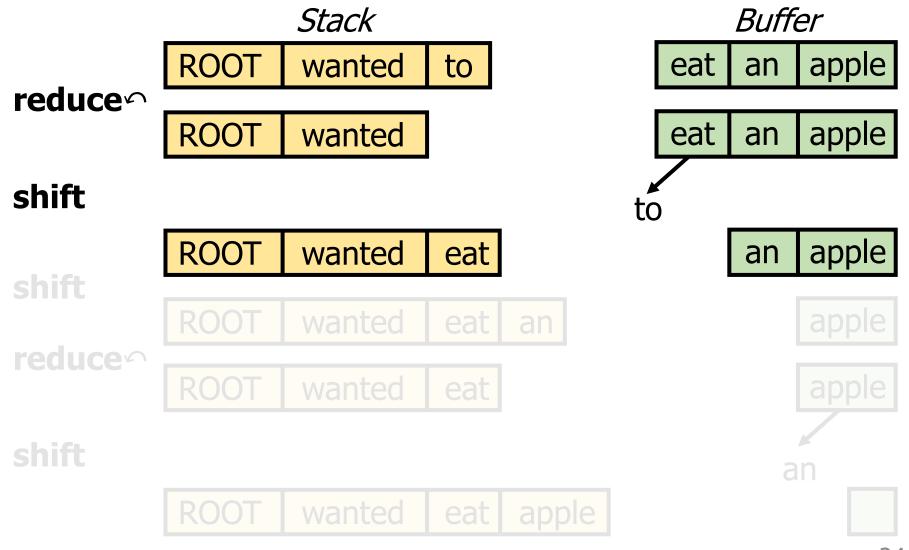


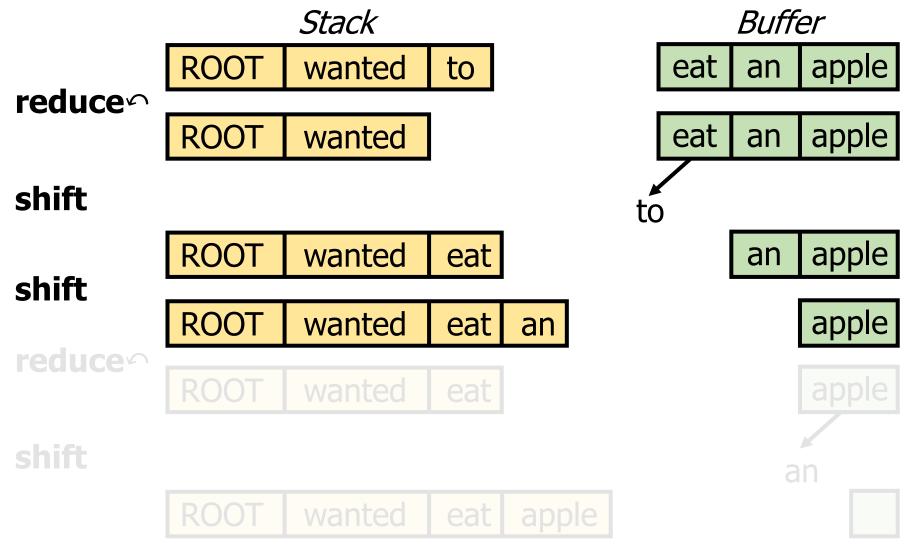


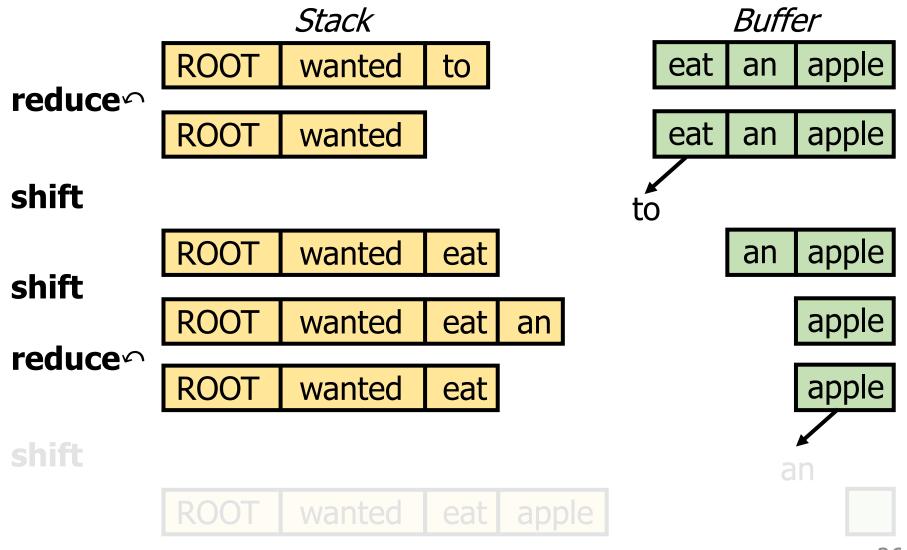




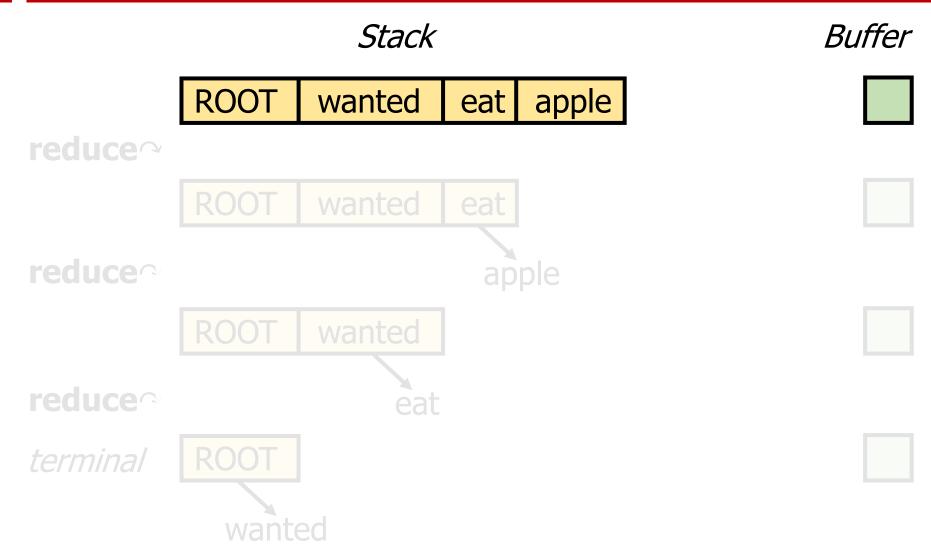


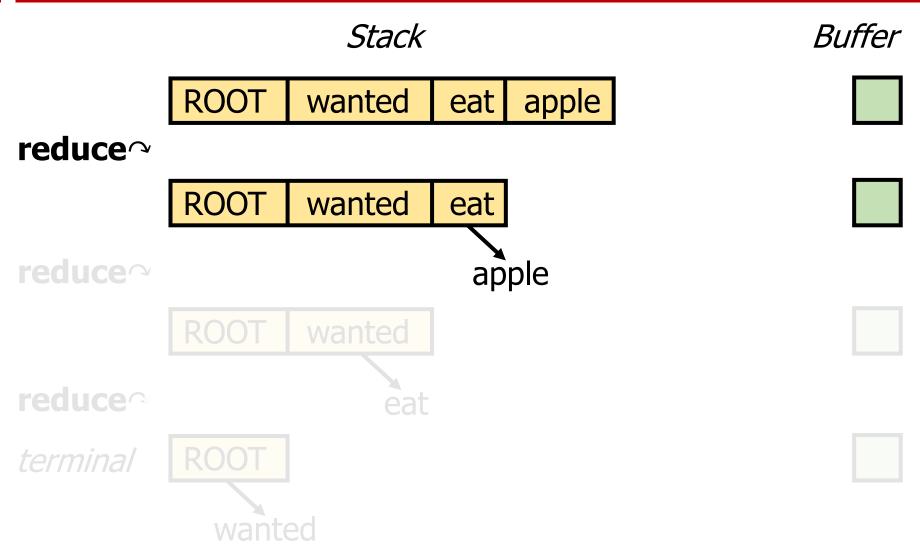


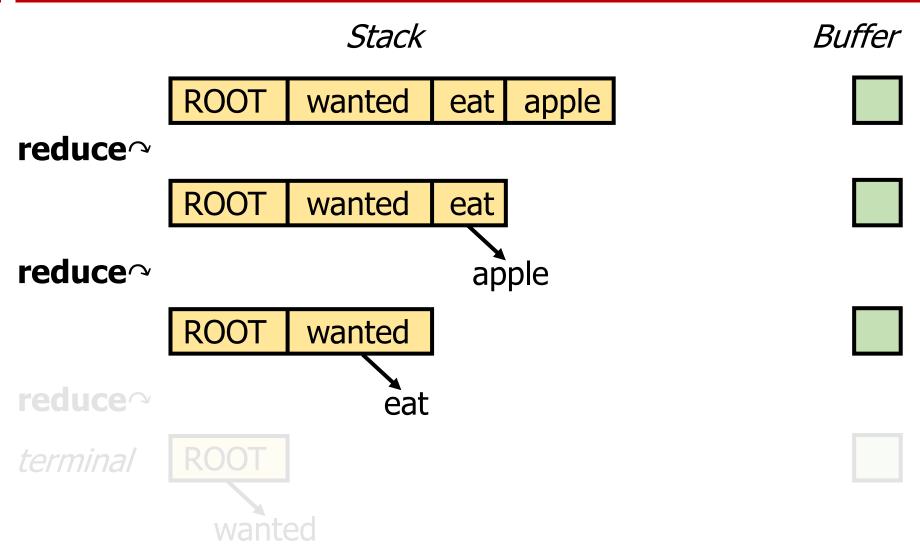


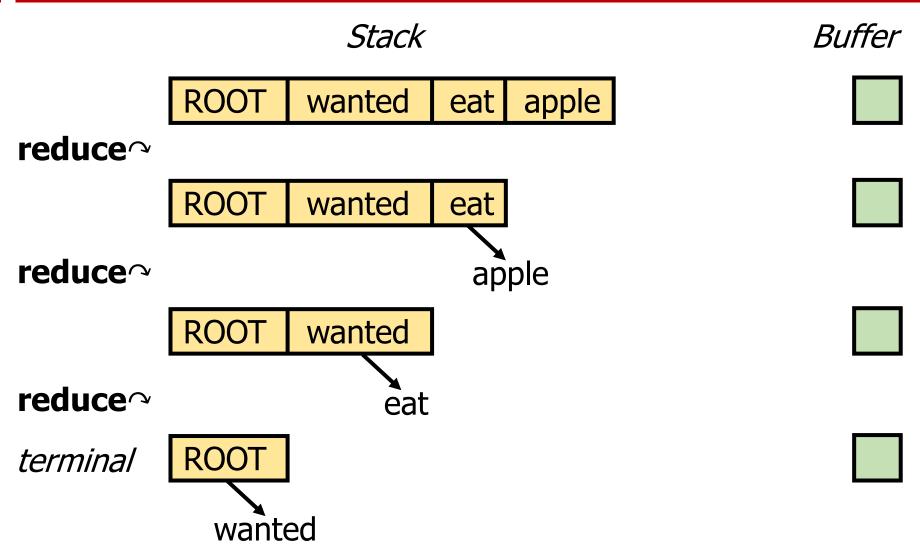




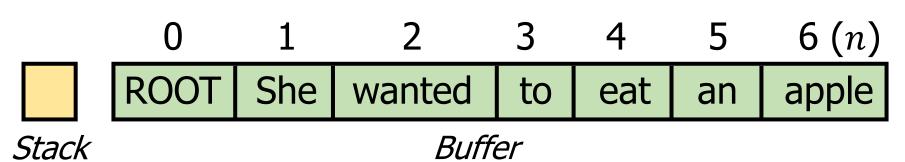






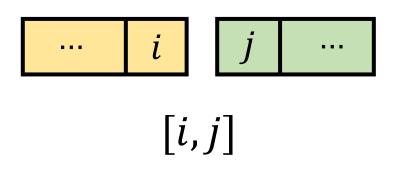


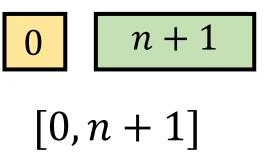
Dynamic Programming for Arc-hybrid

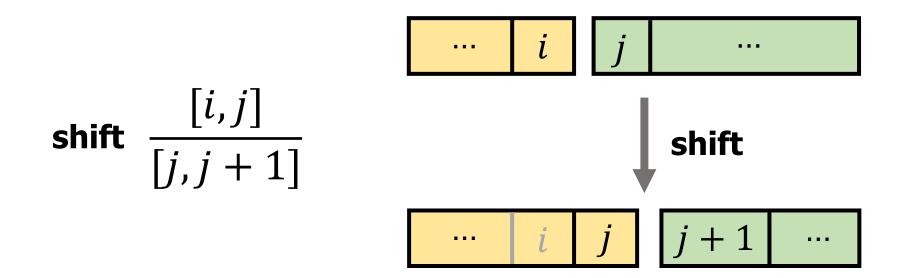


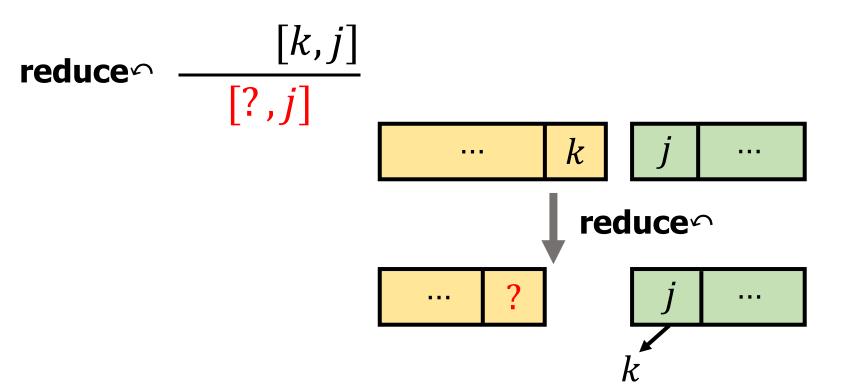
Deduction Item

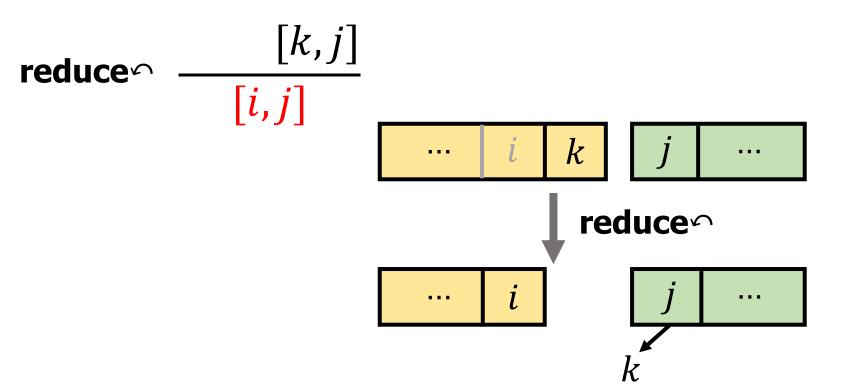
Goal

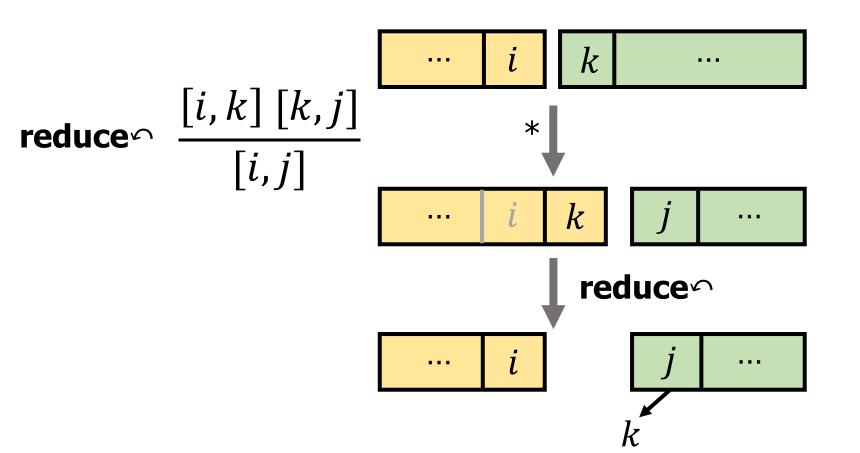




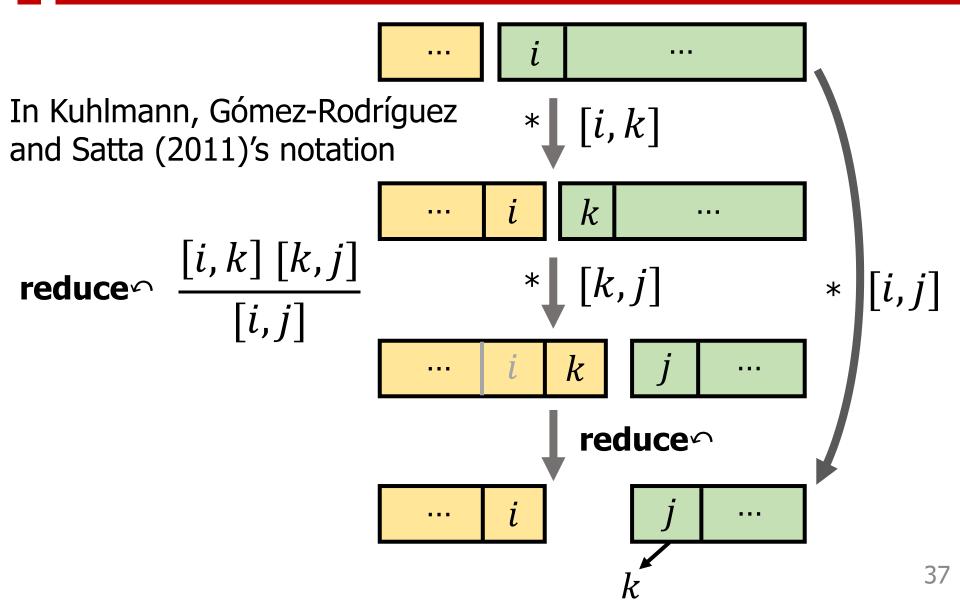




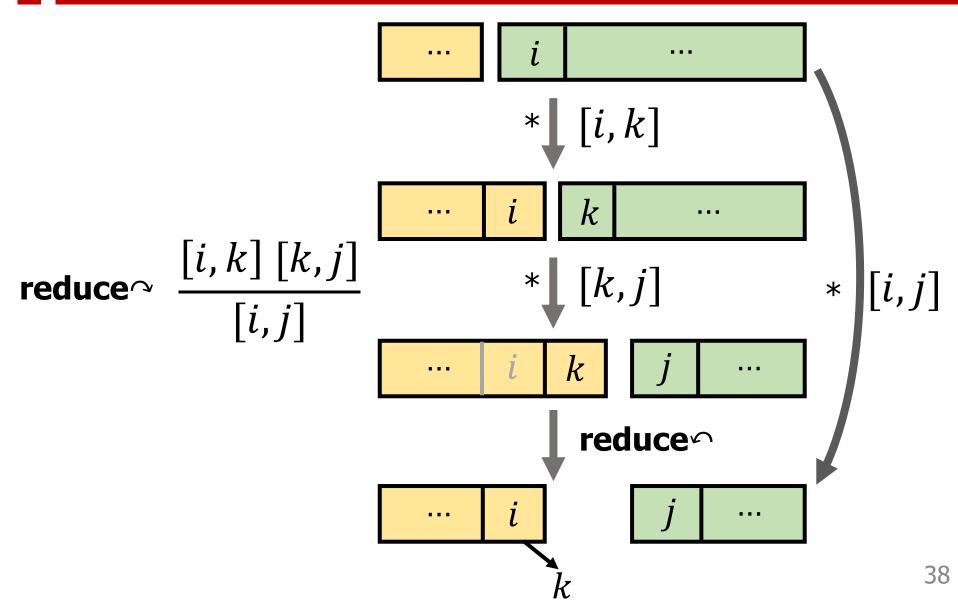




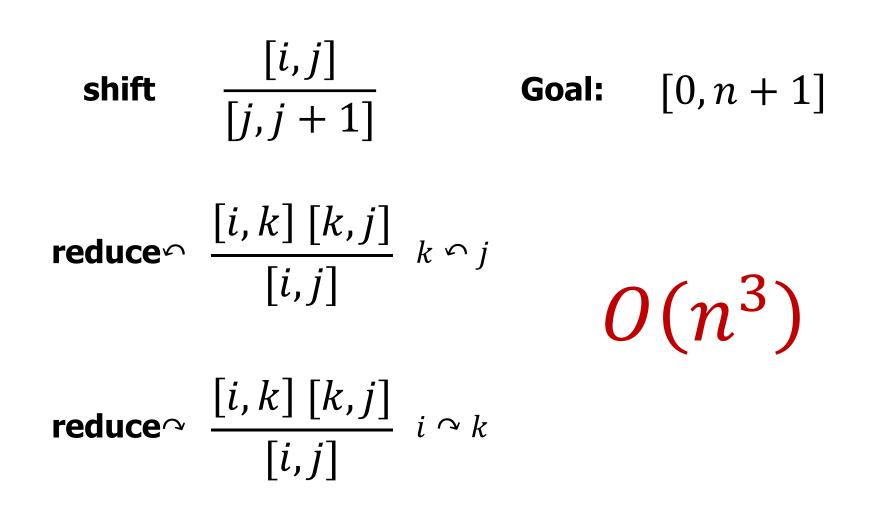
Dynamic Programming for Arc-hybrid



Dynamic Programming for Arc-hybrid



Dynamic Programming for Arc-hybrid



Time Complexity in Practice

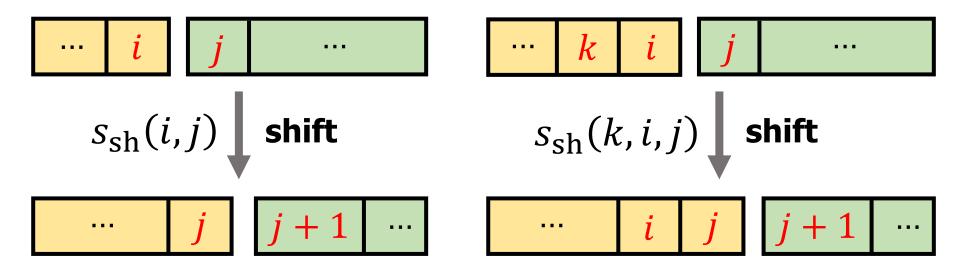
- Complexity depends on feature representation!
- Typical feature representation:
 - Feature templates look at specific <u>positions</u> in the stack and in the buffer

Time Complexity in Practice

Compare the following features

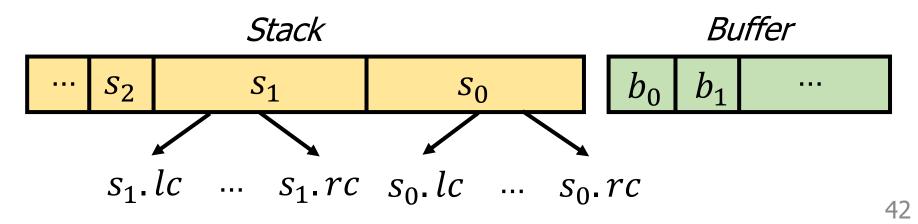
$$b_0$$
 ...

• Time complexities are different!!!



Time Complexity in Practice

- Complexity depends on feature representation!
- Typical feature representation:
 - Feature templates look at specific <u>positions</u> in the stack and in the buffer
- Best-known complexity in practice: $O(n^6)$ (Huang and Sagae, 2010)



Best-known Time Complexities (recap)

 $O(n^{3})$

Theoretical

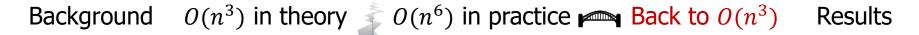
Gap: Feature representation $O(n^{6})$

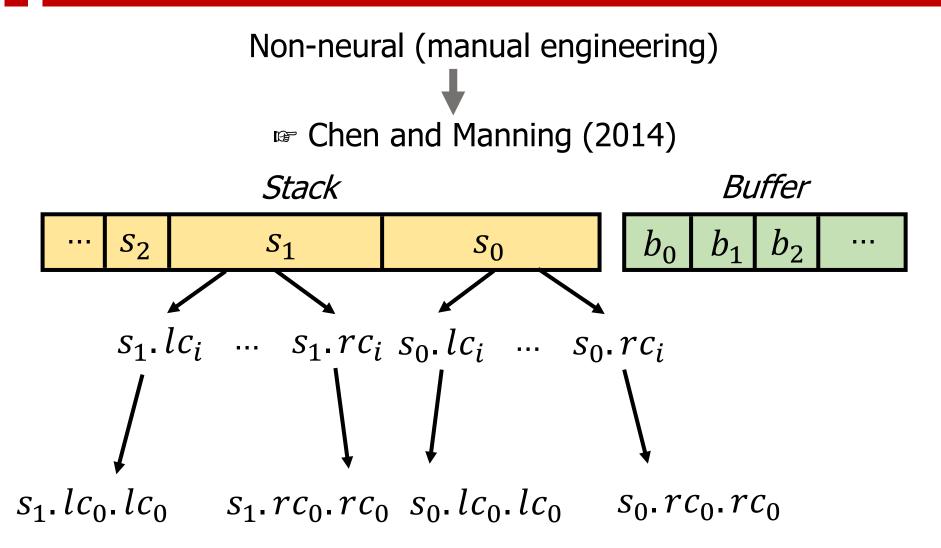
Practical

In Practice, Instead of Exact Decoding ...

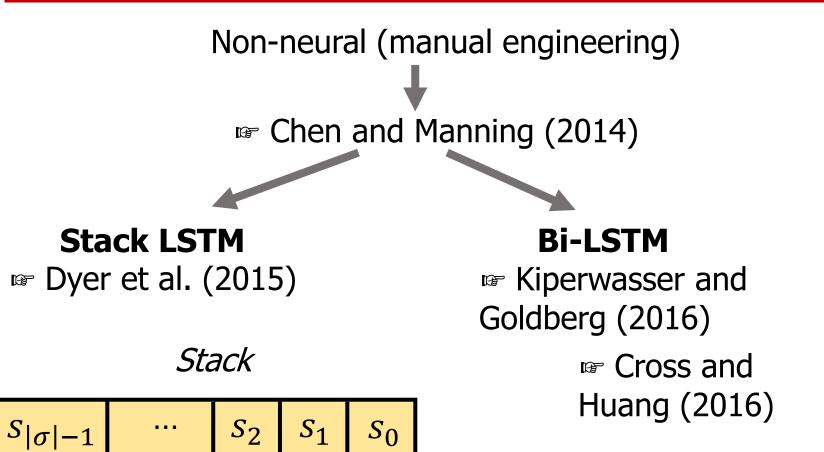
- Greedy search (Nivre, 2003, 2004, 2008; Chen and Manning, 2014)
- Beam search (Zhang and Clark, 2011; Weiss et al., 2015)
- Best-first search (Sagae and Lavie, 2006; Sagae and Tsujii, 2007; Zhao et al., 2013)
- Dynamic oracles (Goldberg and Nivre, 2012, 2013)
- "Global" normalization on the beam (Zhou et al., 2015; Andor et al., 2016)
- Reinforcement learning (Lê and Fokkens, 2017)
- Learning to search (Daumé III and Marcu, 2005; Chang et al., 2016; Wiseman and Rush, 2016)

44



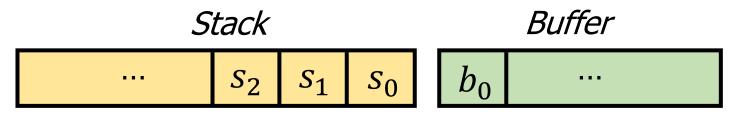


How Many Positional Features Do We Need?

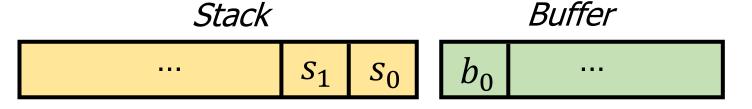


How Many Positional Features Do We Need?

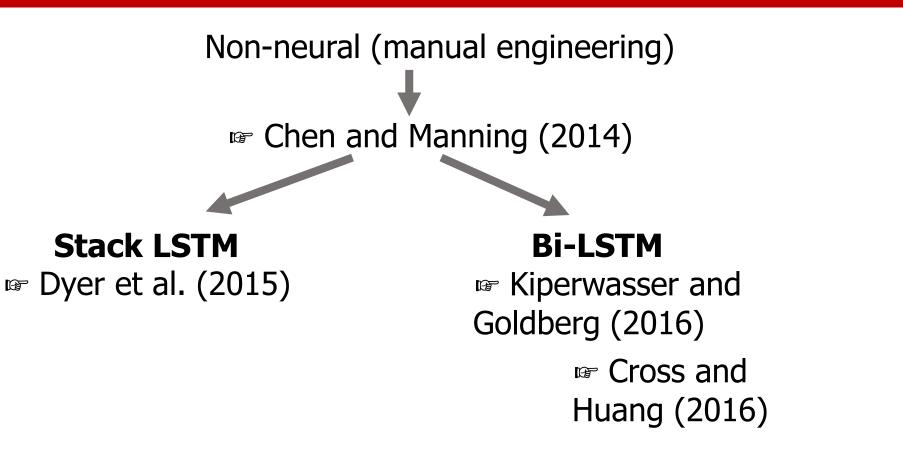
- Bi-LSTMs give compact feature representations (Kiperwasser and Goldberg, 2016; Cross and Huang, 2016)
- Features used in Kiperwasser and Goldberg (2016)



• Features used in Cross and Huang (2016)

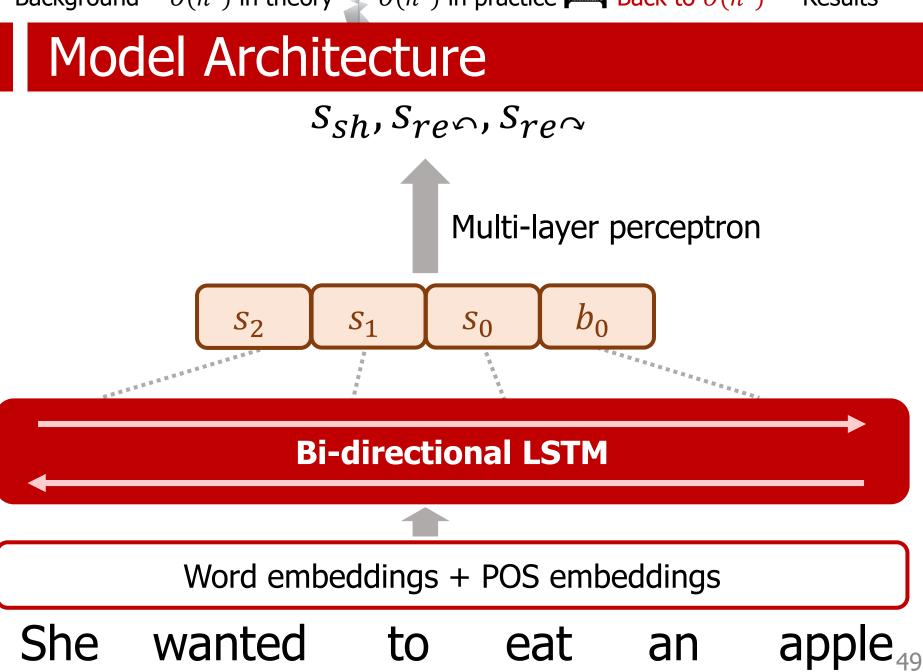


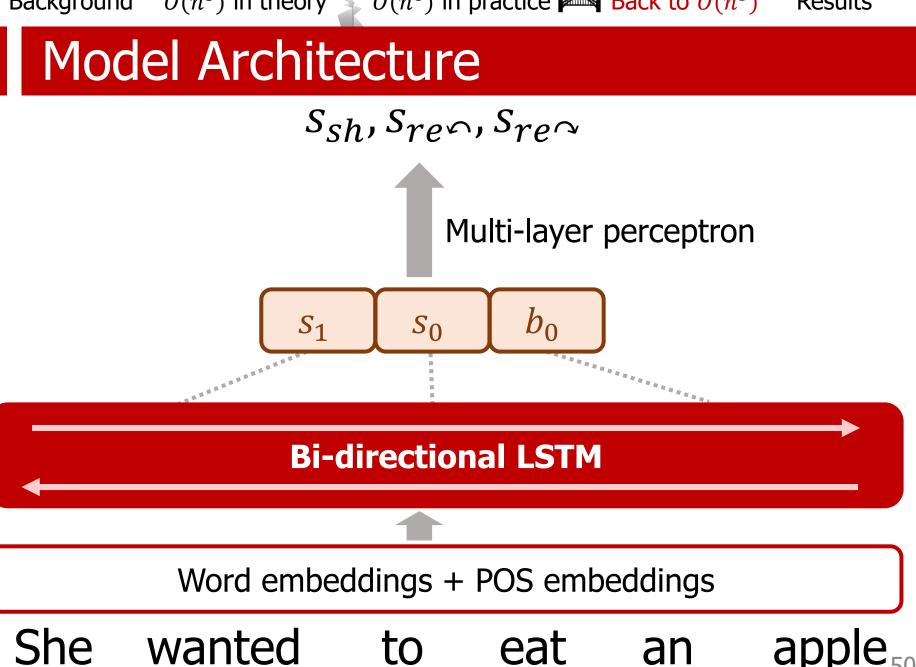
How Many Positional Features Do We Need?



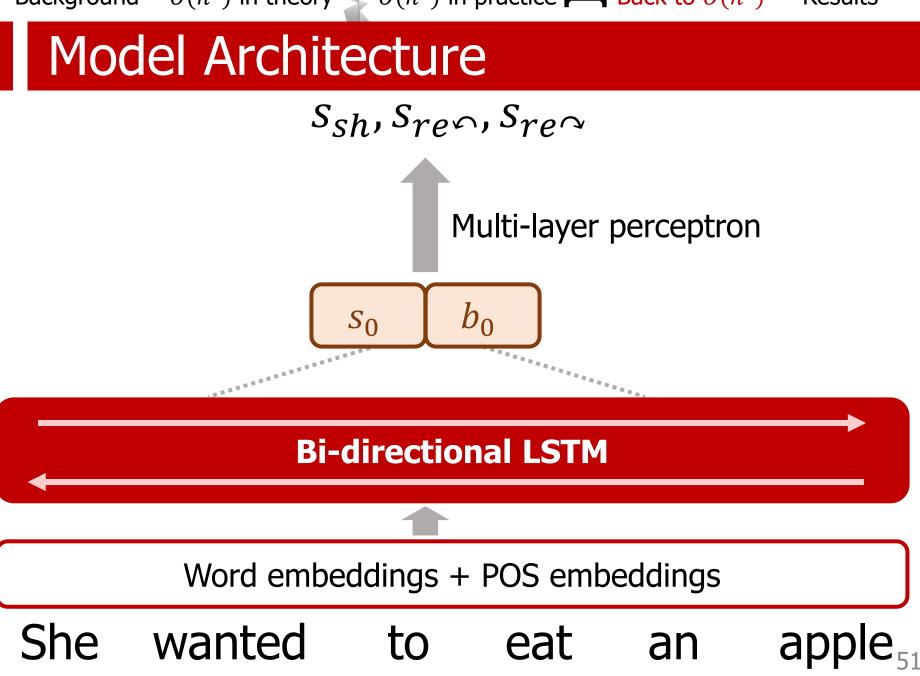
Summarizing trees on stack		Summarizing input		
Exponential DP	Enables	Enables		
	Slow DP	Fast DP	48	

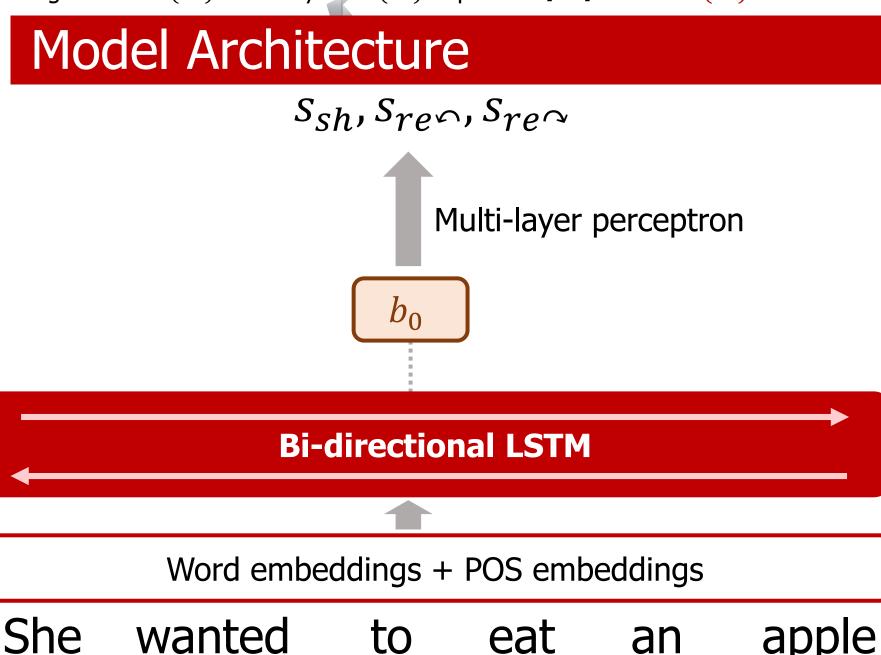
Background $O(n^3)$ in theory $\int O(n^6)$ in practice Results Results





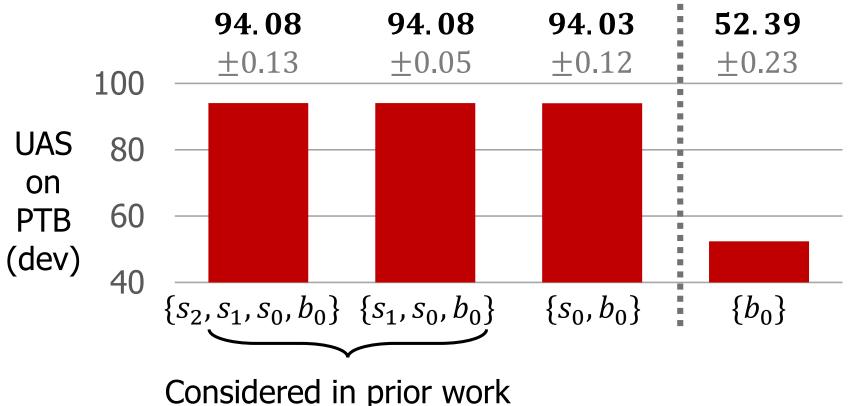
Background $O(n^3)$ in theory $\int O(n^6)$ in practice Results Results





How Many Positional Features Do We Need?

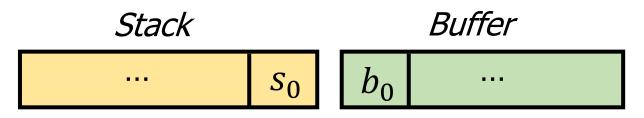
- We answer the question empirically ... experimented with greedy decoding
- Two positional feature vectors are enough!



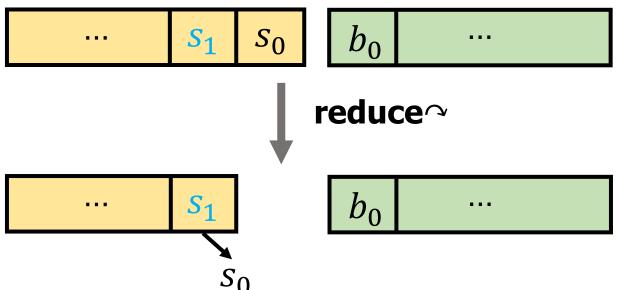
Background $O(n^3)$ in theory $\int O(n^6)$ in practice Results Results

How Many Positional Features Do We Need?

• Our minimal feature set



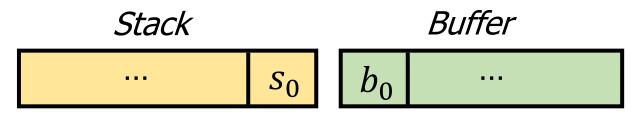
• Counter-intuitive, but works for greedy decoding



Background $O(n^3)$ in theory $\int O(n^6)$ in practice Results Results

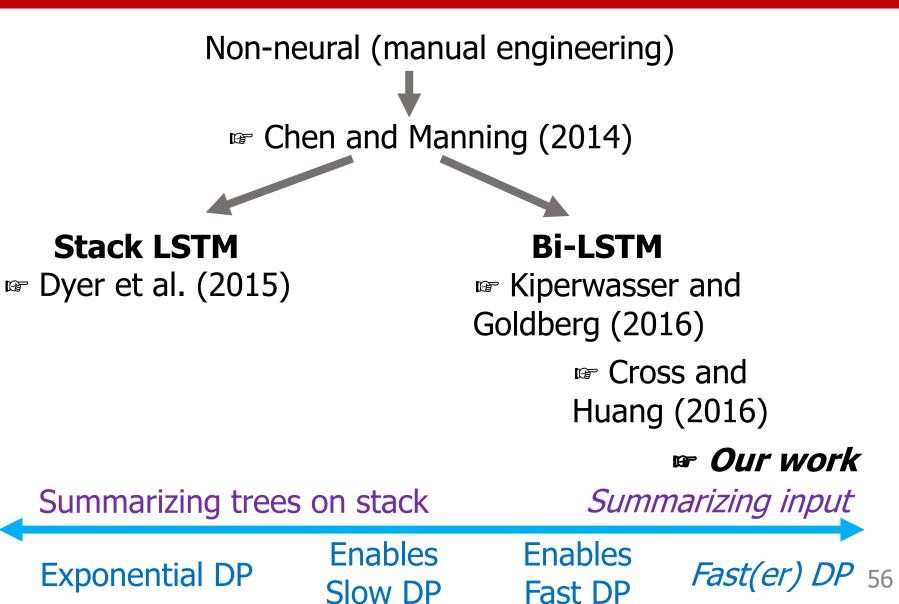
How Many Positional Features Do We Need?

• Our minimal feature set



- Counter-intuitive, but works for *greedy decoding*
- The bare deduction items already contain enough information to extract features for DP
- Leads to the first $O(n^3)$ implementation of global decoders!

How Many Positional Features Do We Need?



Best-known Time Complexities (recap)

 $O(n^{3})$

Theoretical

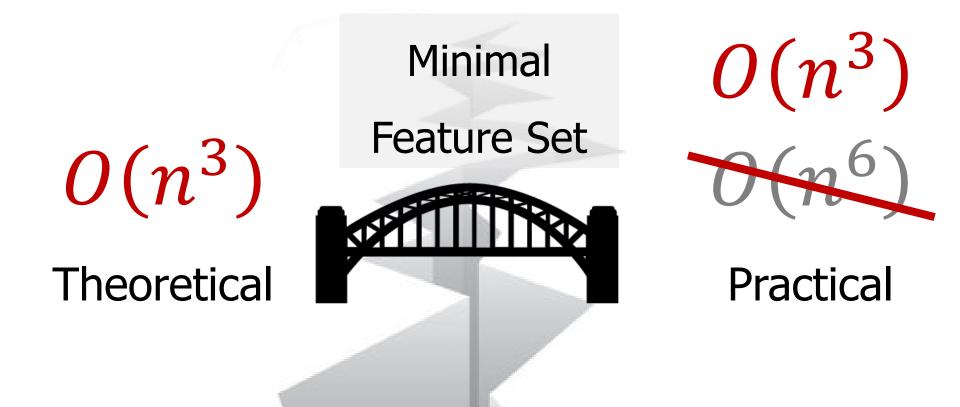
Gap: Feature

representation

 $O(n^{6})$

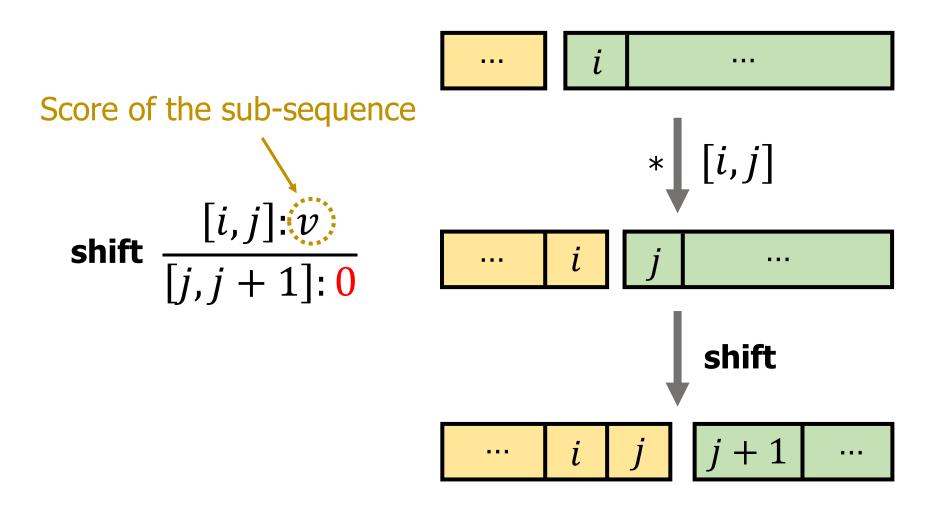
Practical

Our contribution

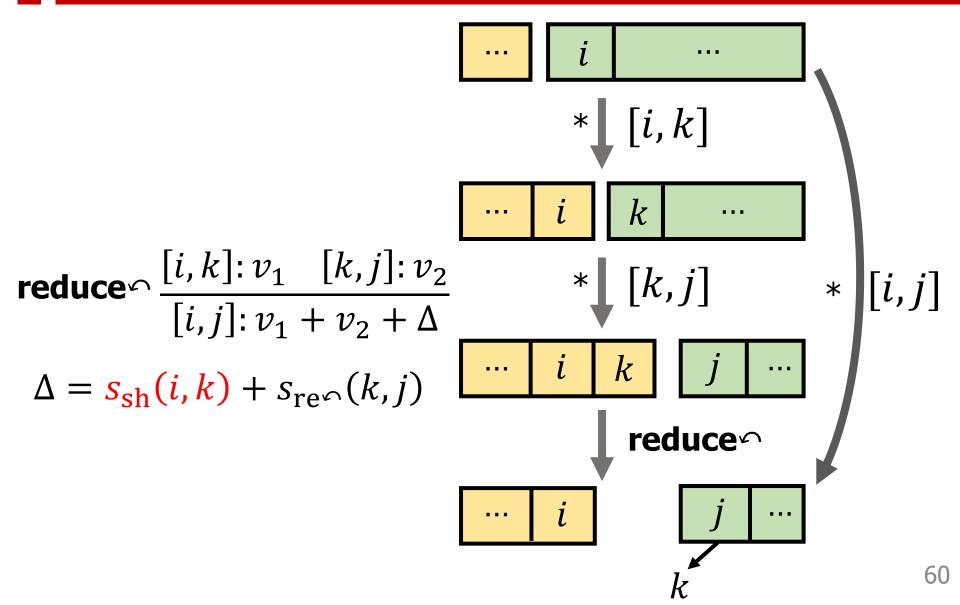


Background $O(n^3)$ in theory $\int O(n^6)$ in practice Results Results

Decoding



Decoding



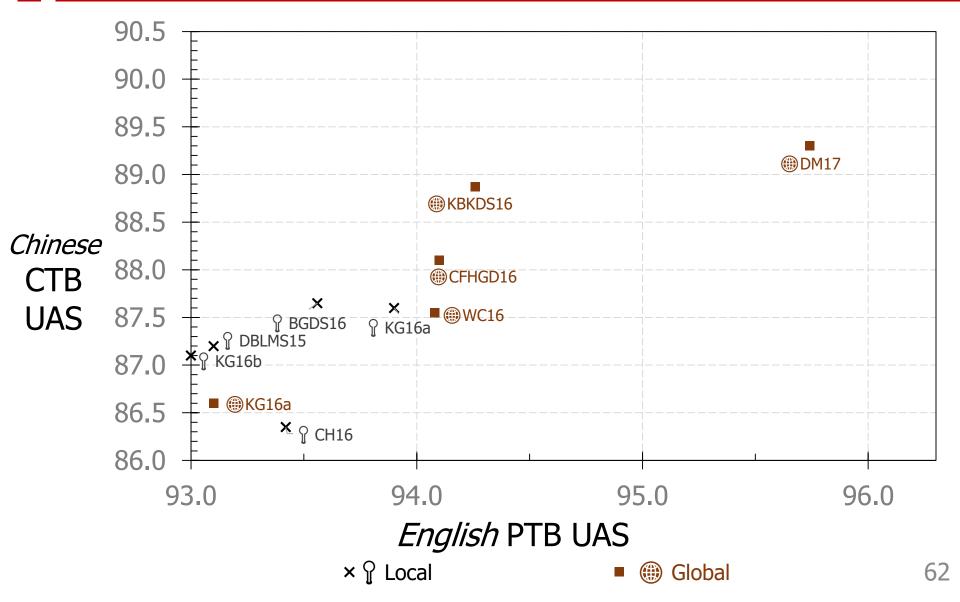
Training

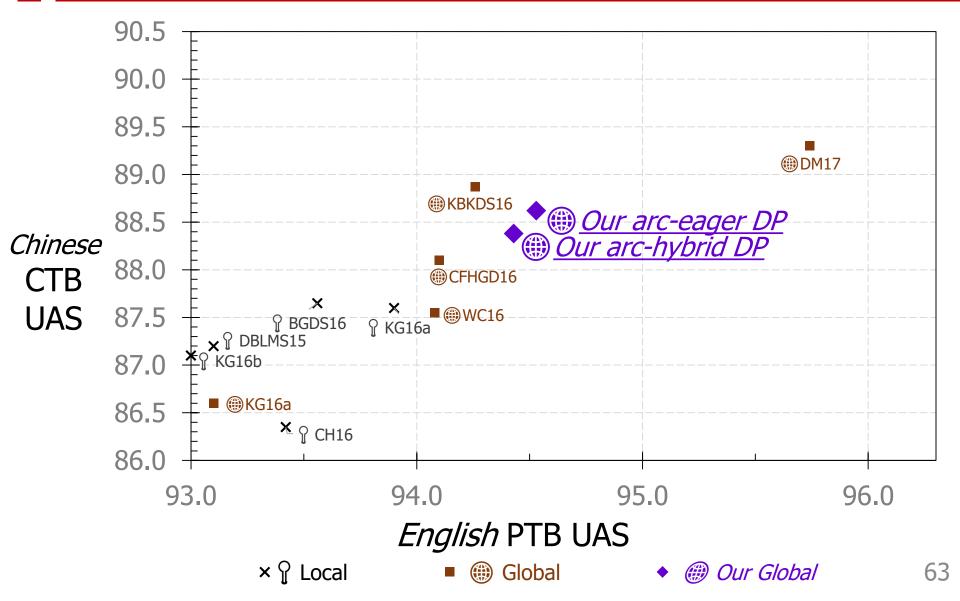
Separate incorrect from correct by a margin

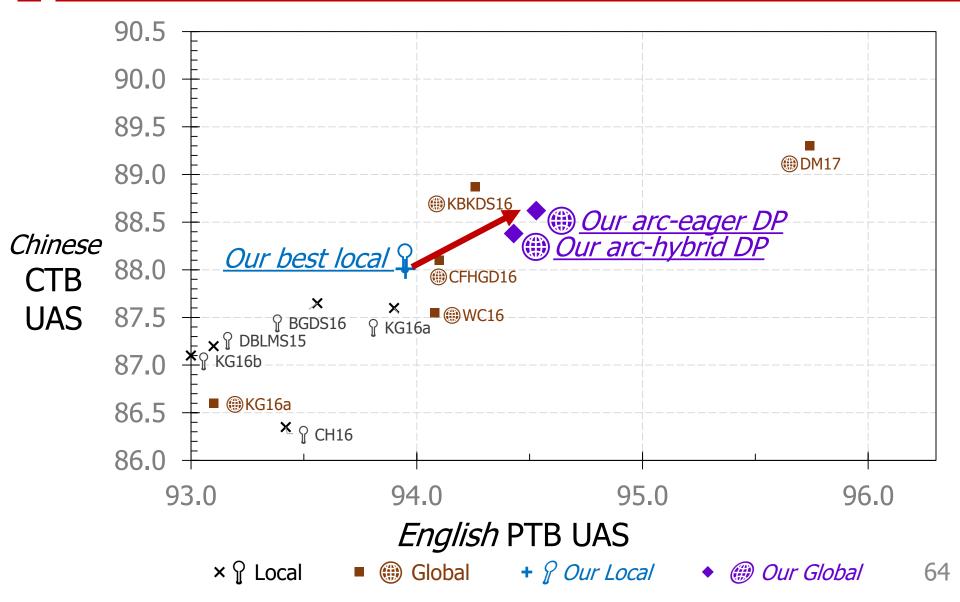
• Cost-augmented decoding (Taskar et al., 2005)

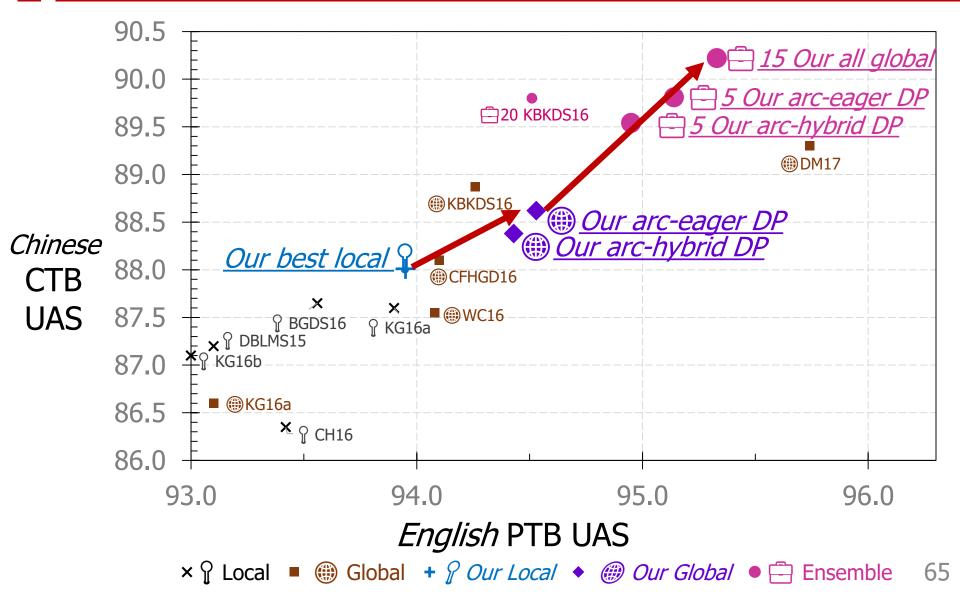
reduce
$$(i,k]: v_1 \quad [k,j]: v_2$$

$$\frac{[i,j]: v_1 + v_2 + s_{sh}(i,k) + s_{re}(k,j) + 1(head (k) \neq j)}{(k,j) + 1(head (k) \neq j)}$$



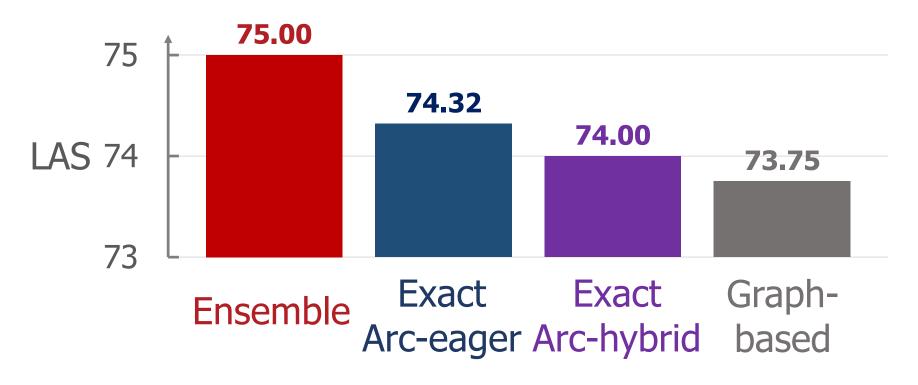






Results – CoNLL'17 Shared Task

- Macro-average of 81 treebanks in 49 languages
- 2nd—highest overall performance



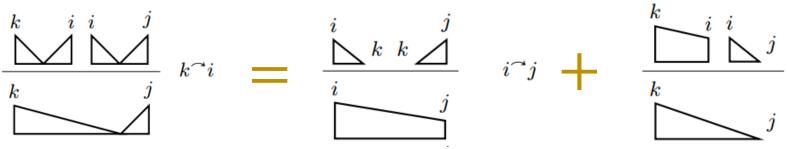
(Shi, Wu, Chen and Cheng, 2017; Zeman et al., 2017) 66

Conclusion

- Bi-LSTM feature set is minimal yet highly effective
- First $O(n^3)$ implementation of exact decoders
- Global training and decoding gave high performance

More in Our Paper

- Description and analysis of three transition systems (arc-standard, arc-hybrid, arc-eager)
- CKY-style representations of the deduction systems



- Theoretical analysis of the global methods
 - Arc-eager models can "simulate" arc-hybrid models
 - Arc-eager models can "simulate" edge-factored models

Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set

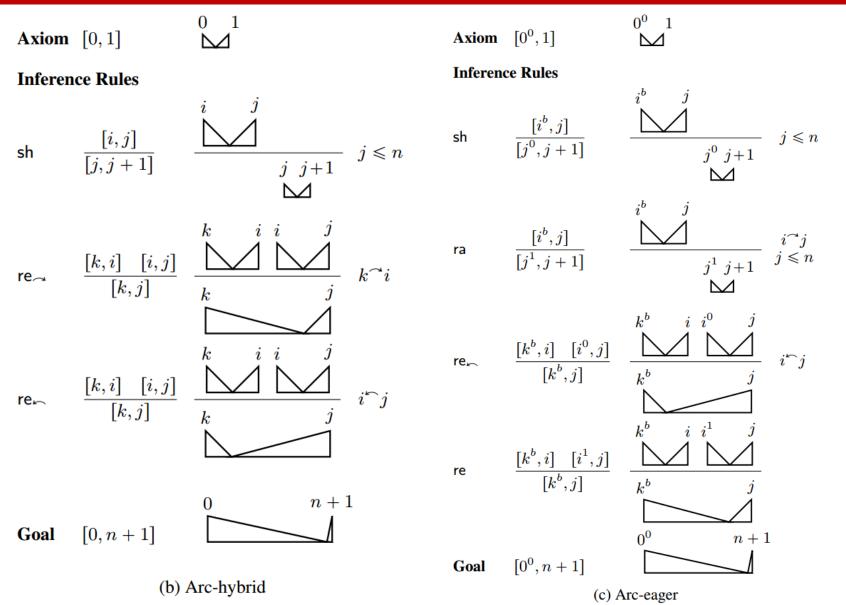
https://github.com/tzshi/dp-parser-emnlp17

Tianze Shi*
Liang Huang+
Lillian Lee*

Image: Shi*
Image: Shi*
Image: Shi*

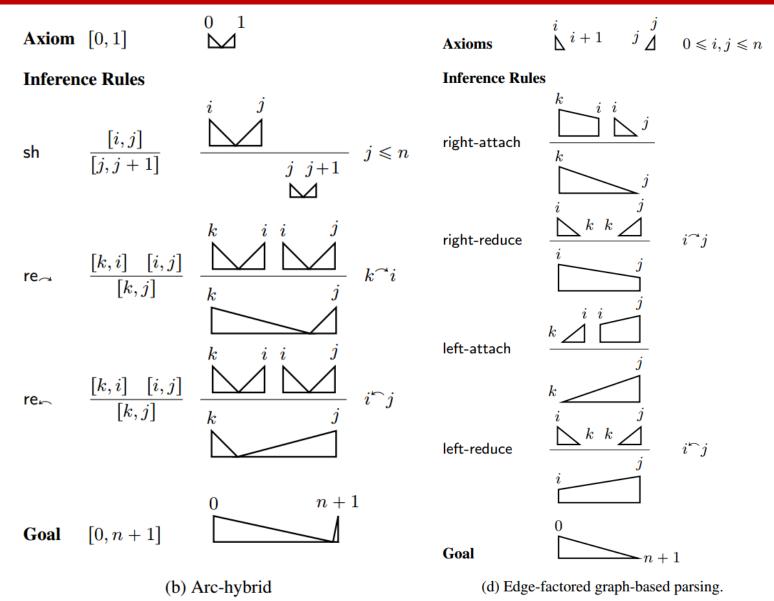
Image: Shi*</

CKY-style Visualization



70

CKY-style Visualization



Results with Arc-eager and Arc-standard

Features	Arc-standard	Arc-hybrid	Arc-eager
$\{\vec{s}_2, \vec{s}_1, \vec{s}_0, \vec{b}_0\}$	93.95 ± 0.12	94.08 ± 0.13	93.92 ± 0.04
$\{ \vec{s}_1, \vec{s}_0, \vec{b}_0 \}$	94.13 ± 0.06	94.08 ± 0.05	$93.91_{\pm 0.07}$
$\{ \stackrel{\rightarrow}{s}_0, \stackrel{\rightarrow}{b}_0 \}$	$54.47_{\pm 0.36}$	94.03 ± 0.12	93.92 ± 0.07
$\{\overrightarrow{b}_0\}$	$47.11_{\pm 0.44}$	$52.39_{\pm 0.23}$	79.15 ± 0.06
Min positions	Arc-standard	Arc-hybrid	Arc-eager
K&G 2016a	-	4	-
C&H 2016a	3	-	-
our work	3	2	2

Results with Arc-eager and Arc-standard

Model Trainin	Trainina	Features	PTB		СТВ	
	Training		UAS (%)	UEM (%)	UAS (%)	UEM (%)
Arc-standard	Local	$\{\vec{s}_2, \vec{s}_1, \vec{s}_0, \vec{b}_0\}$	93.95 $_{\pm 0.12}$	$52.29_{\pm 0.66}$	88.01 ± 0.26	$36.87_{\pm 0.53}$
Arc-hybrid Loc	Local	$\{\vec{s}_2, \vec{s}_1, \vec{s}_0, \vec{b}_0\}$	$93.89_{\pm 0.10}$	$50.82_{\pm 0.75}$	$87.87_{\pm 0.17}$	$35.47_{\pm 0.48}$
	Local	$\{\vec{s}_0, \vec{b}_0\}$	$93.80_{\pm 0.12}$	49.66 ± 0.43	87.78 ± 0.09	$35.09_{\pm 0.40}$
	Global	$\{ \vec{s}_{0}, \vec{b}_{0} \}$	$94.43_{\pm 0.08}$	$53.03_{\pm 0.71}$	$88.38_{\pm 0.11}$	$36.59_{\pm 0.27}$
Arc-eager Lo	Local	$\{\vec{s}_2,\vec{s}_1,\vec{s}_0,\vec{b}_0\}$	$93.80_{\pm 0.12}$	49.66 ± 0.43	$87.49_{\pm 0.20}$	$33.15_{\pm 0.72}$
	Local	$\{\vec{s}_0, \vec{b}_0\}$	$93.77_{\pm 0.08}$	$49.71_{\pm 0.24}$	$87.33_{\pm 0.11}$	$34.17_{\pm 0.41}$
	Global	$\{ \vec{s}_0, \vec{b}_0 \}$	$94.53_{\pm 0.05}$	$53.77_{\pm 0.46}$	$88.62_{\pm 0.09}$	$37.75_{\pm 0.87}$
Edge-factored	Global	$\{\vec{h}, \vec{m}\}$	$94.50_{\pm 0.13}$	$53.86_{\pm 0.78}$	$88.25_{\pm 0.12}$	$36.42_{\pm 0.52}$