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Short Version

• Transition-based dependency parsing has an 

exponentially-large search space

• 𝑂 𝑛3 exact solutions exist 😃

• In practice, however, we needed rich features ⟹ 𝑂 𝑛6 😞

• (This work) with bi-LSTMs, now we can do 𝑂(𝑛3)! 😃

• And we get state-of-the-art results
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Dependency Parsing

She wanted to eat an apple

nsubj

root

mark

xcomp
obj

det

INPUT

OUTPUT
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Transition-based Dependency Parsing

…

…

…

…

Initial state

Terminal
states

…
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Transition-based Dependency Parsing

…

…

…

…

Initial state

Terminal
states

…

Goal:

max score(                  )…

= max ∑ score(         )
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Exact Decoding with Dynamic Programming
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Exponential to polynomial
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(Huang and Sagae, 2010; Kuhlmann, 
Gómez-Rodríguez and Satta, 2011)



Transition Systems
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DP Complexity # Action Types

Arc-standard 𝑂 𝑛4 3
Arc-eager 𝑶 𝒏𝟑 4

Arc-hybrid 𝑶 𝒏𝟑 3

In our 
paper

Presentational convenience

Background 𝑂(𝑛3) in theory      𝑂(𝑛6) in practice        Back to 𝑂(𝑛3) Results



Arc-hybrid Transition System

State

Stack Buffer

𝑠0𝑠1𝑠2 𝑏0 𝑏1
… …

Initial State

Terminal State

ROOT    She    wanted     …

ROOT
(Yamada and Matsumoto, 2003)
(Gómez-Rodríguez et al., 2008) 

(Kuhlmann et al., 2011)
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Arc-hybrid Transition System

Transitions

shift

𝑏0
… …

reduce↷ reduce↶

𝑏0… …

𝑏0
… …𝑠0

…

… …𝑠1 𝑠0

… 𝑠1 …

𝑠0𝑠0
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Stack Buffer

ROOT    She    wanted   to   eat   an   apple

Arc-hybrid Transition System

shift

initial

shift
She    wanted   to   eat   an   appleROOT

wanted   to   eat   an   appleROOT    She
reduce↶

wanted   to   eat   an   appleROOT

Sheshift

to   eat   an   appleROOT    wanted
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ROOT    wanted    eat

Stack Buffer

Arc-hybrid Transition System
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Stack Buffer

Arc-hybrid Transition System
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Dynamic Programming for Arc-hybrid

• Deduction Item
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Stack Buffer

ROOT   She   wanted    to    eat    an    apple

0        1         2        3      4       5      6 (𝑛)  

[𝑖, 𝑗]

𝑗… …𝑖

[0, 𝑛 + 1]

𝑛 + 10

• Goal
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Dynamic Programming for Arc-hybrid

[𝑖, 𝑗]

[𝑗, 𝑗 + 1]
shift shift

𝑗… …

𝑗… 𝑗 + 1 …

𝑖

𝑖
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Dynamic Programming for Arc-hybrid

𝑖, 𝑘 [𝑘, 𝑗]

[? , 𝑗]
reduce↶
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Dynamic Programming for Arc-hybrid

𝑖, 𝑘 [𝑘, 𝑗]

[𝑖, 𝑗]
reduce↶

35

reduce↶

𝑗… …𝑖

𝑘

𝑗… …𝑘𝑖

Background    𝑂(𝑛3) in theory 𝑂(𝑛6) in practice        Back to 𝑂(𝑛3) Results



Dynamic Programming for Arc-hybrid
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Dynamic Programming for Arc-hybrid
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Dynamic Programming for Arc-hybrid

𝑖, 𝑘 [𝑘, 𝑗]

[𝑖, 𝑗]
reduce↶

[𝑖, 𝑗]

[𝑗, 𝑗 + 1]
shift

𝑖, 𝑘 [𝑘, 𝑗]

[𝑖, 𝑗]
reduce↷

𝑂 𝑛3

[0, 𝑛 + 1]Goal:

𝑘 ↶ 𝑗

𝑖 ↷ 𝑘
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Time Complexity in Practice

• Complexity depends on feature representation! 

• Typical feature representation:
• Feature templates look at specific positions in the 

stack and in the buffer

40
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Time Complexity in Practice

• Compare the following features

• Time complexities are different!!!

𝑠0 𝑏0
… … 𝑠0𝑠1 𝑏0

… …

shift

𝑗… …

𝑗… 𝑗 + 1 …

𝑖

shift

𝑗 …

𝑗… 𝑗 + 1 …𝑖

𝑖… 𝑘

𝑠sh 𝑖, 𝑗 𝑠sh 𝑘, 𝑖, 𝑗
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Time Complexity in Practice

• Complexity depends on feature representation! 

• Typical feature representation:
• Feature templates look at specific positions in the 

stack and in the buffer

• Best-known complexity in practice: 𝑂(𝑛6)
(Huang and Sagae, 2010)

Stack Buffer

𝑠0𝑠1𝑠2 𝑏0 𝑏1
… …

𝑠1. 𝑙𝑐 𝑠1. 𝑟𝑐… 𝑠0. 𝑙𝑐 𝑠0. 𝑟𝑐…
42
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Best-known Time Complexities (recap)

𝑂 𝑛3 𝑂 𝑛6

Theoretical Practical

Gap:

Feature 
representation
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In Practice, Instead of Exact Decoding …

• Greedy search (Nivre, 2003, 2004, 2008; Chen and Manning, 2014)

• Beam search (Zhang and Clark, 2011; Weiss et al.,2015)

• Best-first search (Sagae and Lavie, 2006; Sagae and Tsujii, 2007; 
Zhao et al., 2013)

• Dynamic oracles (Goldberg and Nivre, 2012, 2013)

• “Global” normalization on the beam (Zhou et al., 2015; Andor
et al., 2016) 

• Reinforcement learning (Lê and Fokkens, 2017)

• Learning to search (Daumé III and Marcu, 2005; Chang et al., 
2016; Wiseman and Rush, 2016)

• …

44
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How Many Positional Features Do We Need?
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Non-neural (manual engineering)

☞ Chen and Manning (2014)
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𝑠0𝑠1𝑠2 𝑏0 𝑏1
… …𝑏2

𝑠1. 𝑙𝑐𝑖 𝑠1. 𝑟𝑐𝑖… 𝑠0. 𝑙𝑐𝑖 𝑠0. 𝑟𝑐𝑖…

𝑠0. 𝑟𝑐0. 𝑟𝑐0𝑠0. 𝑙𝑐0. 𝑙𝑐0𝑠1. 𝑟𝑐0. 𝑟𝑐0𝑠1. 𝑙𝑐0. 𝑙𝑐0



How Many Positional Features Do We Need?
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Non-neural (manual engineering)

☞ Chen and Manning (2014)

Stack LSTM
☞ Dyer et al. (2015)

Bi-LSTM
☞ Kiperwasser and 
Goldberg (2016)

☞ Cross and 
Huang (2016)
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Stack

𝑠0𝑠1𝑠2…𝑠 𝜎 −1



How Many Positional Features Do We Need?

• Bi-LSTMs give compact feature representations 
(Kiperwasser and Goldberg, 2016; Cross and Huang, 2016)

• Features used in Kiperwasser and Goldberg (2016)

• Features used in Cross and Huang (2016)

Stack Buffer

𝑠0𝑠1𝑠2 𝑏0
… …

Stack Buffer

𝑠0𝑠1 𝑏0
… …

47

Background    𝑂(𝑛3) in theory      𝑂(𝑛6) in practice        Back to 𝑂(𝑛3) Results



How Many Positional Features Do We Need?
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Non-neural (manual engineering)

☞ Chen and Manning (2014)

Stack LSTM
☞ Dyer et al. (2015)

Bi-LSTM
☞ Kiperwasser and 
Goldberg (2016)

☞ Cross and 
Huang (2016)
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Exponential DP

Summarizing trees on stack Summarizing input



Model Architecture

She wanted to eat an apple

Bi-directional LSTM

Word embeddings + POS embeddings

𝑠0 𝑏0𝑠1

Multi-layer perceptron

𝑠𝑠ℎ, 𝑠𝑟𝑒↶, 𝑠𝑟𝑒↷
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Model Architecture

She wanted to eat an apple

Bi-directional LSTM

Word embeddings + POS embeddings

𝑏0

Multi-layer perceptron

𝑠𝑠ℎ, 𝑠𝑟𝑒↶, 𝑠𝑟𝑒↷
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How Many Positional Features Do We Need?

• We answer the question empirically

… experimented with greedy decoding

• Two positional feature vectors are enough!

40

60

80

100

{𝑠2, 𝑠1, 𝑠0, 𝑏0} {𝑠1, 𝑠0, 𝑏0} {𝑠0, 𝑏0} {𝑏0}

𝟗𝟒. 𝟎𝟖
±0.13

𝟗𝟒. 𝟎𝟖
±0.05

𝟗𝟒. 𝟎𝟑
±0.12

𝟓𝟐. 𝟑𝟗
±0.23

UAS
on
PTB

(dev)

53Considered in prior work
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• Our minimal feature set

• Counter-intuitive, but works for greedy decoding

Stack Buffer

𝑠0 𝑏0
… …

How Many Positional Features Do We Need?
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reduce↷

… 𝑠1 𝑠0

… 𝑠1

𝑠0

𝑏0
…

𝑏0
…
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• Our minimal feature set

• Counter-intuitive, but works for greedy decoding

• The bare deduction items already contain enough 
information to extract features for DP

• Leads to the first 𝑂 𝑛3 implementation of global 
decoders! 

Stack Buffer

𝑠0 𝑏0
… …

How Many Positional Features Do We Need?
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How Many Positional Features Do We Need?
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Non-neural (manual engineering)

☞ Chen and Manning (2014)

Stack LSTM
☞ Dyer et al. (2015)

Bi-LSTM
☞ Kiperwasser and 
Goldberg (2016)

☞ Cross and 
Huang (2016)

☞ Our work

Summarizing trees on stack
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Enables
Slow DP

Enables
Fast DP

Fast(er) DPExponential DP

Summarizing input



Best-known Time Complexities (recap)

𝑂 𝑛3 𝑂 𝑛6

Theoretical Practical

Gap:

Feature 
representation
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Our contribution

𝑂 𝑛3 𝑂 𝑛6

Theoretical Practical

𝑂 𝑛3Minimal 

Feature Set
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Decoding

𝑖, 𝑗 : 𝑣

𝑗, 𝑗 + 1 : 0
shift

* [𝑖, 𝑗]

𝑖… …

shift

𝑗… …

𝑗… 𝑗 + 1 …

𝑖

𝑖

59

Score of the sub-sequence
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Decoding

𝑖, 𝑘 : 𝑣1 𝑘, 𝑗 : 𝑣2
𝑖, 𝑗 : 𝑣1 + 𝑣2 + Δ

reduce↶

Δ = 𝑠sh 𝑖, 𝑘 + 𝑠re↶ 𝑘, 𝑗

60

reduce↶

𝑗… …𝑖

𝑘

𝑘… …𝑖

𝑗… …𝑘𝑖

𝑖… …

* [𝑖, 𝑘]

* [𝑘, 𝑗] * [𝑖, 𝑗]
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Training

• Separate incorrect from correct by a margin

• Cost-augmented decoding (Taskar et al., 2005)

max score(               ) - score(               ) + cost(               ) … …
…

…

𝑖, 𝑘 : 𝑣1 𝑘, 𝑗 : 𝑣2
𝑖, 𝑗 : 𝑣1 + 𝑣2 + 𝑠sh 𝑖, 𝑘 + 𝑠re↶ 𝑘, 𝑗 + 𝟏 head 𝑘 ≠ 𝑗

reduce↶

𝑗… …𝑖

𝑘 61
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Comparing with State-of-the-art

📍 BGDS16

📍 CH16

📍 DBLMS15
📍 KG16a

📍 KG16b

🌐CFHGD16

🌐DM17

🌐KG16a

🌐KBKDS16

🌐WC16

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

93.0 94.0 95.0 96.0

📍 Local 🌐 Global

Chinese

CTB
UAS

English PTB UAS
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Comparing with State-of-the-art

📍 BGDS16

📍 CH16

📍 DBLMS15
📍 KG16a

📍 KG16b

🌐CFHGD16

🌐DM17

🌐KG16a

🌐KBKDS16

🌐WC16

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

93.0 94.0 95.0 96.0

📍 Local 🌐 Global 🌐 Our Global

Chinese

CTB
UAS

English PTB UAS
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🌐Our arc-hybrid DP
🌐Our arc-eager DP
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Comparing with State-of-the-art

📍 BGDS16

📍 CH16

📍 DBLMS15
📍 KG16a

📍 KG16b

🌐CFHGD16

🌐DM17

🌐KG16a

🌐KBKDS16

🌐WC16

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

93.0 94.0 95.0 96.0

📍 Local 🌐 Global 📍 Our Local 🌐 Our Global

Chinese

CTB
UAS

English PTB UAS
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Our best local 📍 🌐Our arc-hybrid DP
🌐Our arc-eager DP
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Comparing with State-of-the-art

📍 BGDS16

📍 CH16

📍 DBLMS15
📍 KG16a

📍 KG16b

🌐CFHGD16

🌐DM17

🌐KG16a

🌐KBKDS16

🌐WC16

💼20 KBKDS16

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

93.0 94.0 95.0 96.0

📍 Local 🌐 Global 📍 Our Local 🌐 Our Global 💼 Ensemble

Chinese

CTB
UAS

English PTB UAS
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Our best local 📍 🌐Our arc-hybrid DP

💼5 Our arc-hybrid DP

🌐Our arc-eager DP

💼5 Our arc-eager DP

💼15 Our all global
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Results – CoNLL’17 Shared Task

75.00

74.32
74.00

73.75

73

74

75

LAS

Ensemble Exact
Arc-eager

Exact
Arc-hybrid

Graph-
based

(Shi, Wu, Chen and Cheng, 2017; Zeman et al., 2017)

• Macro-average of 81 treebanks in 49 languages

• 2nd–highest overall performance
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Conclusion

• Bi-LSTM feature set is minimal yet highly effective

• First 𝑂 𝑛3 implementation of exact decoders

• Global training and decoding gave high performance
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More in Our Paper

• Description and analysis of three transition systems 

(arc-standard, arc-hybrid, arc-eager)

• CKY-style representations of the deduction systems

• Theoretical analysis of the global methods

• Arc-eager models can “simulate” arc-hybrid models

• Arc-eager models can “simulate” edge-factored models

68

= +



Fast(er) Exact Decoding and Global Training for 

Transition-Based Dependency Parsing

via a Minimal Feature Set

Tianze Shi* Liang Huang† Lillian Lee*

https://github.com/tzshi/dp-parser-emnlp17
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University
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CKY-style Visualization
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CKY-style Visualization
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Results with Arc-eager and Arc-standard
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Results with Arc-eager and Arc-standard
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